Skip to main content
Log in

Establishment of a loop-mediated isothermal amplification (LAMP) detection method for genetically modified maize MON88017

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

In this study, we developed a visual and rapid assay for the detection of MON88017 maize using the LAMP method. The LAMP method was specific for MON88017 event and takes only 40 min and the LAMP assay sensitivity is about 40 copies, which is the same level as that of conventional PCR method. LAMP amplicons can directly be detected by naked-eye inspection after adding SYBR Green I. In summary, the LAMP method is visual, faster, and more sensitive and does not need special equipment compared to the traditional PCR technique, which makes it a very higher efficiency approach for field tests and fast screening of GMO crops, especially for on-site, large-scale testing purposes in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen L, Guo J, Wang Q, Kai G, Yang L (2011) Development of the visual loop-mediated isothermal amplification assays for seven genetically modified maize events and their application in practical samples analysis. J Agric Food Chem 59:5914–5918

    Article  CAS  Google Scholar 

  2. Chen X, Wang X, Jin N, Zhou Y, Huang S, Miao Q (2012) Endpoint visual detection of three genetically modified rice events by loop-mediated isothermal amplification. Int J Mol Sci 13:14421–14433

    Article  CAS  Google Scholar 

  3. Cheng Y, Zhang MH, Hu K, Sun FD, Tao R, Gao XJ, Luan FX (2014) Loop-mediated isothermal amplification for the event-specific detection of wheat B73-6-1. Food Anal Methods 7:500–505

    Article  Google Scholar 

  4. Choi SH (2011) Hexaplex PCR assay and liquid bead array for detection of stacked genetically modified cotton event 281-24-236 × 3006-210-23. Anal Bioanal Chem 401(2):647–655

    Article  CAS  Google Scholar 

  5. Datukishvili N, Kutateladze T, Gabriadze I, Bitskinashvili K, Vishnepolsky B (2015) New multiplex PCR methods for rapid screening of genetically modified organisms in foods. Front Microbiol 6:757. doi:10.3389/fmicb.2015.00757

    Article  Google Scholar 

  6. Delobel C, Foti N, Grazioli E (2013) Event-specific method for the quantification of maize line MON88017 using real-time PCR v. 1.01. Publications Office of the European Union, Luxembourg

  7. Feng J, Tang S, Liu L, Kuang X, Wang X, Hu S, You S (2015) Development of a loop-mediated isothermal amplification (LAMP) assay for rapid and specific detection of common genetically modified organisms (GMOs). Int J Food Sci Nutr 66(2):186–196

    Article  CAS  Google Scholar 

  8. Fu K, Huang W, Deng T, Li F, Liu H, Chen Y (2015) Multiplex PCR assay and liquid bead array for detection of 13 lines genetically modified maize. J Chin Inst Food Sci Technol 15(1):188–197

    CAS  Google Scholar 

  9. Guan X, Guo J, Shen P, Yang L (2010) Visual and rapid detection of two genetically modified soybean events using loop-mediated isothermal amplification method. DNA Seq 3:313–320

    Google Scholar 

  10. Gruère GP, Rao SR (2007) A review of international labeling policies of genetically modified food to evaluate India’s proposed rule. AgBioForum 10(1):51–64

    Google Scholar 

  11. Heide BR, Heir E, Holck A (2008) Detection of eight GMO maize events by qualitative, multiplex PCR and fluorescence capillary gel electrophoresis. Eur Food Res Technol 227(2):527–535

    Article  CAS  Google Scholar 

  12. Holck AL, Pedersen BO (2011) Simple, sensitive, accurate multiplex quantitative competitive PCR with capillary electrophoresis detection for the determination of genetically modified maize. Eur Food Res Technol 233(6):951–961

    Article  CAS  Google Scholar 

  13. Huang X, Chen L, Xu J, Ji H, Zhu S, Chen H (2014) Rapid visual detection of phytase gene in genetically modified maize using loop-mediated isothermal amplification method. Food Chem 156:184–189

    Article  CAS  Google Scholar 

  14. James C (2014) Global status of commercialized Biotech/GM crops. ISAAA Briefs 2014:49

    Google Scholar 

  15. Kiddle G, Hardinge P, Buttigieg N, Gandelman O, Pereira C, Mcelgunn CJ (2012) GMO detection using a bioluminescent real time reporter (BART) of loop mediated isothermal amplification (LAMP) suitable for field use. BMC Biotechnol 12(1):15–27

    Article  CAS  Google Scholar 

  16. Köppel R, Bucher T (2015) Rapid establishment of droplet digital PCR for quantitative GMO analysis. Eur Food Res Technol 241(3):427–439

    Article  Google Scholar 

  17. Lee D, Mura ML, Allnutt TR, Powell W (2009) Detection of genetically modified organisms (GMOs) using isothermal amplification of target DNA sequences. BMC Biotechnol 7:1–7

    CAS  Google Scholar 

  18. Li F, Yan W, Long L, Qi X, Li C, Zhang S (2014) Development and application of loop-mediated isothermal amplification assays for rapid visual detection of cry2Ab and cry3A genes in genetically-modified crops. Int J Mol Sci 15:15109a–15121a

    Article  Google Scholar 

  19. Li Q, Fang J, Liu X (2013) Loop-mediated isothermal amplification (LAMP) method for rapid detection of cry1Ab gene in transgenic rice (Oryza sativa L.). Eur Food Res Technol 236:589–598

    Article  CAS  Google Scholar 

  20. Li X, Wang X, Yang J, Liu Y, He Y, Pan L (2014) A novel quadruplex real-time PCR method for simultaneous detection of Cry2Ae and two genetically modified cotton events (GHB119 and T304-40). BMC Biotechnol 14:43b

    Article  Google Scholar 

  21. Liang C, van Dijk JP, Scholtens IM, Staats M, Prins TW, Voorhuijzen MM, da Silva AM, Arisi AC, den Dunnen JT, Kok EJ (2014) Detecting authorized and unauthorized genetically modified organisms containing vip3A by real-time PCR and next-generation sequencing. Anal Bioanal Chem 406(11):2603–2611

    Article  CAS  Google Scholar 

  22. Liu M, Luo Y, Tao R, He R, Jiang K, Wang B, Wang L (2009) Sensitive and rapid detection of genetic modified soybean (Roundup Ready) by loop-mediated isothermal amplification. Biosci Biotechnol Biochem 73(11):2365–2369

    Article  CAS  Google Scholar 

  23. Morisset D, Štebih D, Milavec M, Gruden K, Žel J (2013) Quantitative analysis of food and feed samples with droplet digital PCR. PLoS One 8(5):e62583

    Article  CAS  Google Scholar 

  24. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:e63

    Article  CAS  Google Scholar 

  25. Oguchi T, Onishi M, Mano J, Akiyama H, Teshima R, Futo S, Furui S, Kitta K (2010) Development of multiplex PCR method for simultaneous detection of four events of genetically modified maize: DAS-59122-7, MIR604, MON863 and MON88017. Shokuhin Eiseigaku Zasshi 51(3):92–100

    Article  CAS  Google Scholar 

  26. Paper O (2004) Real-time loop-mediated isothermal amplification for the CaMV-35S promoter as a screening method for genetically modified organisms. Eur Food Res Technol 218:496–500

    Article  Google Scholar 

  27. Santiago-Felipe S, Tortajada-Genaro LA, Puchades R, Maquieira A (2014) Recombinase polymerase and enzyme-linked immunosorbent assay as a DNA amplification-detection strategy for food analysis. Anal Chim Acta 811:81–87

    Article  CAS  Google Scholar 

  28. Shao N, Jiang SM, Zhang M, Wang J, Guo SJ, Li Y, Jiang HW, Liu CX, Zhang DB, Yang LT, Tao SC (2014) MACRO: a combined microchip-PCR and microarray system for high-throughput monitoring of genetically modified organisms. Anal Chem 86(2):1269–1276

    Article  CAS  Google Scholar 

  29. Swigonová Z, Bennetzen JL, Messing J (2005) Structure and evolution of the r/b chromosomal regions in rice, maize and sorghum. Genetics 169(2):891–906

    Article  Google Scholar 

  30. Treml D, Venturelli GL, Brod FC, Faria JC, Arisi AC (2014) Development of an event-specific hydrolysis probe quantitative real-time polymerase chain reaction assay for Embrapa 5.1 genetically modified common bean (Phaseolus vulgaris). J Agric Food Chem 62(49):11994–12000

    Article  CAS  Google Scholar 

  31. Wang X, Tian F, Guan Q, Wang J (2012) Comparison of three DNA extraction methods for feed products and four amplification methods for the 5′-junction fragment of Roundup Ready soybean. J Agric Food Chem 60:4586–4595

    Article  CAS  Google Scholar 

  32. Willems S, Fraiture MA, Deforce D, De Keersmaecker SC, De Loose M, Ruttink T, Herman P, Van Nieuwerburgh F, Roosens N (2016) Statistical framework for detection of genetically modified organisms based on next generation sequencing. Food Chem 192:788–798

    Article  CAS  Google Scholar 

  33. Woźniakowski G, Kozdruń W, Samorek-Salamonowicz E (2012) Loop-mediated isothermal amplification for the detection of goose circovirus. Virol J 9:110–120

    Article  Google Scholar 

  34. Wunderlich S, Gatto KA (2015) Consumer perception of genetically modified organisms and sources of information. Adv Nutr 6(6):842–851

    Article  CAS  Google Scholar 

  35. Xu J, Zheng Q, Yu L, Liu R, Zhao X, Wang G (2013) Loop-mediated isothermal amplification (LAMP) method for detection of genetically modified maize T25. Int J Food Sci Nutr 1(6):432–438

    CAS  Google Scholar 

  36. Zhang F, Wang L, Wang R, Ying Y, Wu J (2015) Simple screening strategy with only water bath needed for the identification of insect-resistant genetically modified rice. Anal Chem 87(3):1523–1526

    Article  CAS  Google Scholar 

  37. Zhang M, Liu Y, Chen L, Quan S, Jiang S, Zhang D (2013) One simple DNA extraction device and its combination with modified visual loop-mediated isothermal amplification for rapid on-field detection of genetically modified organisms. Anal Chem 85:75–82

    Article  CAS  Google Scholar 

  38. Zhang M, Zhen Z, Yu Y, Gao X, Liu Y (2015) Development of a rapid event-specific loop-mediated isothermal amplification detection method for genetically modified maize NK603. Food Anal Method. doi:10.1007/s12161-015-0244-1

    Google Scholar 

  39. Zhou D, Guo J, Xu L, Gao S, Lin Q, Wu Q, Wu L, Que Y (2014) Establishment and application of a loop-mediated isothermal amplification (LAMP) system for detection of cry1Ac transgenic sugarcane. Sci Rep 9(4):4912–4919

    Google Scholar 

Download references

Acknowledgments

This study was supported by Natural Science Foundation of Heilongjiang Province of China (No. C2015003), National Natural Science Foundation of China (No. J1210069), Doctor Scientific Research Initial Foundation of Northeast Agricultural University (No. 2012RCB19) and the Discipline Team Construction Project of Northeast Agricultural University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghui Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Informed consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhen, Z., Zhang, M., Yu, Y. et al. Establishment of a loop-mediated isothermal amplification (LAMP) detection method for genetically modified maize MON88017. Eur Food Res Technol 242, 1787–1793 (2016). https://doi.org/10.1007/s00217-016-2678-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-016-2678-0

Keywords

Navigation