Skip to main content
Log in

Green-emitting carbon quantum dots as a dual-mode fluorescent and colorimetric sensor for hypochlorite

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, green-emitting carbon quantum dots were successfully prepared through a facile one-step solid-state reaction method. The obtained green-emitting carbon dots (G-CDs) showed good fluorescence stability in NaCl aqueous solution and different pH values. Moreover, the G-CDs showed high sensitivity and selectivity for detecting hypochlorite by both fluorometry and colorimetry. Under the optimized condition, a highly sensitive detection of hypochlorite was established in the range of 0.2–100 μM and 10–150 μM for fluorescent and colorimetric methods, respectively. The corresponding limits of detection (LOD) were 0.0781 μM and 1.82 μM, respectively. Therefore, the G-CDs were successfully applied to determinate hypochlorite in actual water samples. In addition, a paper-based sensor loading with the G-CDs was also developed for rapid visual detection of hypochlorite. The results suggested that the G-CDs could be a promising candidate to detect hypochlorite.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yu H, Wu Y, Hu Y, Gao X, Liang Q, Xu J, Shao S. Dual-functional fluorescent probe responds to hypochlorous acid and SO2 derivatives with different fluorescence signals. Talanta. 2017;165:625–31. https://doi.org/10.1016/j.talanta.2017.01.015.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang J, Yang X. A simple yet effective chromogenic reagent for the rapid estimation of bromate and hypochlorite in drinking water. Analyst. 2013;138(2):434–7. https://doi.org/10.1039/c2an36287b.

    Article  CAS  PubMed  Google Scholar 

  3. Li K-B, Dong L, Zhang S, Shi W, Jia W-P, Han D-M. Fluorogenic boronate-based probe-lactulose complex for full-aqueous analysis of peroxynitrite. Talanta. 2017;165:593–7. https://doi.org/10.1016/j.talanta.2017.01.028.

    Article  CAS  PubMed  Google Scholar 

  4. Pang L, Zhou Y, Gao W, Song H, Wang X, Wang Y. A highly selective and sensitive fluorescence probe for rapid detection of hypochlorite in tap water and cancer cells. RSC Adv. 2016;6(107):105795–800. https://doi.org/10.1039/c6ra23548d.

    Article  CAS  Google Scholar 

  5. Zhang Y, Ma Y, Wang Z, Zhang X, Chen X, Hou S, Wang H. A novel colorimetric and far-red emission ratiometric fluorescent probe for the highly selective and ultrafast detection of hypochlorite in water and its application in bioimaging. Analyst. 2020;145(3):939–45. https://doi.org/10.1039/c9an02034a.

    Article  CAS  PubMed  Google Scholar 

  6. Wang H, He Y, Li Y, Zhang C, Zhang P, Cui J, Long Y, Chen S, Zeng R, Chen J. Selective ratiometric fluorescence detection of hypochlorite by using aggregation-induced emission dots. Anal Bioanal Chem. 2019;411(10):1979–88. https://doi.org/10.1007/s00216-019-01653-0.

    Article  CAS  PubMed  Google Scholar 

  7. Wang S, Wu S-H, Fang W-L, Guo X-F, Wang H. Synthesis of non-doped and non-modified carbon dots with high quantum yield and crystallinity by one-pot hydrothermal method using a single carbon source and used for ClO- detection. Dyes Pigm. 2019;164:7–13. https://doi.org/10.1016/j.dyepig.2019.01.004.

    Article  CAS  Google Scholar 

  8. Cheng T, Zhao J, Wang Z, An J, Xu Y, Qian X, Liu G. A highly sensitive and selective hypochlorite fluorescent probe based on oxidation of hydrazine via free radical mechanism. Dyes Pigm. 2016;126:218–23. https://doi.org/10.1016/j.dyepig.2015.10.020.

    Article  CAS  Google Scholar 

  9. Yu L, Chen H, Yue J, Chen X, Sun M, Hou J, Alamry KA, Marwani HM, Wang X, Wang S. Europium metal-organic framework for selective and sensitive detection of doxycycline based on fluorescence enhancement. Talanta. 2020;207:120297. https://doi.org/10.1016/j.talanta.2019.120297.

    Article  CAS  PubMed  Google Scholar 

  10. Xi L-L, Guo X-F, Wang C-L, Wu W-L, Huang M-F, Miao J-Y, Zhao B-X. A near-infrared ratiometric fluorescent probe for rapid and selective detection of hypochlorous acid in aqueous solution and living cells. Sens Actuat B-Chem. 2018;255:666–71. https://doi.org/10.1016/j.snb.2017.08.073.

    Article  CAS  Google Scholar 

  11. Li H, Guan L, Zhang X, Yu H, Huang D, Sun M, Wang S. A cyanine-based near-infrared fluorescent probe for highly sensitive and selective detection of hypochlorous acid and bioimaging. Talanta. 2016;161:592–8. https://doi.org/10.1016/j.talanta.2016.09.008.

    Article  CAS  PubMed  Google Scholar 

  12. Simoes EFC, Leitao JMM, Esteves da Silva JCG. Carbon dots prepared from citric acid and urea as fluorescent probes for hypochlorite and peroxynitrite. Microchim Acta. 2016;183(5):1769–77. https://doi.org/10.1007/s00604-016-1807-6.

    Article  CAS  Google Scholar 

  13. Cheng S, Li A, Pan X, Wang H, Zhang C, Li J, Qi X. A near-infrared fluorescent probe for highly specific and ultrasensitive detection of hypochlorite ions in living cells. Anal Bioanal Chem. 2021;413(17):4441–50. https://doi.org/10.1007/s00216-021-03398-1.

    Article  CAS  PubMed  Google Scholar 

  14. Yan L, Hu C, Li J. A fluorescence turn-on probe for rapid monitoring of hypochlorite based on coumarin Schiff base. Anal Bioanal Chem. 2018;410(28):7457–64. https://doi.org/10.1007/s00216-018-1352-8.

    Article  CAS  PubMed  Google Scholar 

  15. Wu D, Chen L, Xu Q, Chen X, Yoon J. Design principles, sensing mechanisms, and applications of highly specific fluorescent probes for HOCl/OCl. Acc Chem Res. 2019;52(8):2158–68. https://doi.org/10.1021/acs.accounts.9b00307.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Z, Wang H, Chen Z, Wang X, Choo J, Chen L. Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: strategies and applications. Biosens Bioelectron. 2018;114:52–65. https://doi.org/10.1016/j.bios.2018.05.015.

    Article  CAS  PubMed  Google Scholar 

  17. Tang L, Li J. Plasmon-based colorimetric nanosensors for ultrasensitive molecular diagnostics. Acs Sensors. 2017;2(7):857–75. https://doi.org/10.1021/acssensors.7b00282.

    Article  CAS  PubMed  Google Scholar 

  18. Li T, Li Y, Zhang Y, Dong C, Shen Z, Wu A. A colorimetric nitrite detection system with excellent selectivity and high sensitivity based on Ag@Au nanoparticles. Analyst. 2015;140(4):1076–81. https://doi.org/10.1039/c4an01583e.

    Article  CAS  PubMed  Google Scholar 

  19. Macounova KM, Simic N, Ahlberg E, Krtil P. Hypochlorite oxidation on RuO2-based electrodes: a combined electrochemical and in situ mass spectroscopic study. Electrocatalysis. 2019;10(1):45–55. https://doi.org/10.1007/s12678-018-0487-x.

    Article  CAS  Google Scholar 

  20. Yang Q, Zhong X, Chen Y, Yang J, Jin C, Jiang Y. A mitochondria-targeted fluorescent probe for hypochlorite sensing and its application in bioimaging. Analyst. 2020;145(8):3100–5. https://doi.org/10.1039/d0an00245c.

    Article  CAS  PubMed  Google Scholar 

  21. Wang R, Wang R, Ju D, Lu W, Jiang C, Shan X, Chen Q, Sun G. “ON-OFF-ON” fluorescent probes based on nitrogen-doped carbon dots for hypochlorite and bisulfite detection in living cells. Analyst. 2018;143(23):5834–40. https://doi.org/10.1039/c8an01585f.

    Article  CAS  PubMed  Google Scholar 

  22. Liu L, Zhu G, Zeng W, Lv B, Yi Y. Highly sensitive and selective “off-on” fluorescent sensing platform for ClO- in water based on silicon quantum dots coupled with nanosilver. Anal Bioanal Chem. 2019;411(8):1561–8. https://doi.org/10.1007/s00216-019-01597-5.

    Article  CAS  PubMed  Google Scholar 

  23. Rha CJ, Lee H, Kim C. Development of an azo-naphthol-based probe for detecting hypochlorite (ClO-) via color change in aqueous solution. Inorg Chem Commun. 2020;121:108244. https://doi.org/10.1016/j.inoche.2020.108244.

    Article  CAS  Google Scholar 

  24. Yun D, Chae JB, Kim C. An imine-based colorimetric chemodosimeter for the detection of hypochlorite (ClO-) in aqueous media: its application in test strips and real water samples. J Chem Sci. 2019;131(5):1–8. https://doi.org/10.1007/s12039-019-1617-6.

    Article  CAS  Google Scholar 

  25. Zhang R, Song B, Yuan J. Bioanalytical methods for hypochlorous acid detection: recent advances and challenges. Trac-Trends Anal Chem. 2018;99:1–33. https://doi.org/10.1016/j.trac.2017.11.015.

    Article  CAS  Google Scholar 

  26. Jiang Q, Wang Z, Li M, Song J, Yang Y, Xu X, Xu H, Wang S. A novel nopinone-based fluorescent probe for colorimetric and ratiometric detection of hypochlorite and its applications in water samples and living cells. Analyst. 2020;145(3):1033–40. https://doi.org/10.1039/c9an01981b.

    Article  CAS  PubMed  Google Scholar 

  27. Li C, Niu Q, Li T, Wei T, Hu T, Chen J, Qin X, Yang L. A novel dual-function bithiophene-Meldrum’s acid based chemosensor for highly sensitive, colorimetric and fluorimetric detection of cyanide and hypochlorite and its applications. Dyes Pigm. 2020;180:108459. https://doi.org/10.1016/j.dyepig.2020.108459.

    Article  CAS  Google Scholar 

  28. Yang M, Lee SC, Kim M, Lim MH, Kim C. A multi-functional picolinohydrazide-based chemosensor for colorimetric detection of iron and dual responsive detection of hypochlorite. Spectrochim Acta Part Molec Biomolec Spectr. 2021;245:118899. https://doi.org/10.1016/j.saa.2020.118899.

    Article  CAS  Google Scholar 

  29. Zhang R, Liang L, Meng Q, Zhao J, Ta HT, Li L, Zhang Z, Sultanbawa Y, Xu ZP. Responsive upconversion nanoprobe for background-free hypochlorous acid detection and bioimaging. Small. 2019;15(2):1803712. https://doi.org/10.1002/smll.201803712.

    Article  CAS  Google Scholar 

  30. Pan J, Zheng Z, Yang J, Wu Y, Lu F, Chen Y, Gao W. A novel and sensitive fluorescence sensor for glutathione detection by controlling the surface passivation degree of carbon quantum dots. Talanta. 2017;166:1–7. https://doi.org/10.1016/j.talanta.2017.01.033.

    Article  CAS  PubMed  Google Scholar 

  31. Ahmad K, Gogoi SK, Begum R, Sk MP, Paul A, Chattopadhyay A. An interactive quantum dot and carbon dot conjugate for pH-sensitive and ratiometric Cu2+ sensing. ChemPhysChem. 2017;18(6):610–6. https://doi.org/10.1002/cphc.201601249.

    Article  CAS  PubMed  Google Scholar 

  32. Pal A, Sk MP, Chattopadhyay A. Conducting carbon dot-polypyrrole nanocomposite for sensitive detection of picric acid. ACS Appl Mater Interfaces. 2016;8(9):5758–62. https://doi.org/10.1021/acsami.5b11572.

    Article  CAS  PubMed  Google Scholar 

  33. Omer KM. Highly passivated phosphorous and nitrogen co-doped carbon quantum dots and fluorometric assay for detection of copper ions. Anal Bioanal Chem. 2018;410(24):6331–6. https://doi.org/10.1007/s00216-018-1242-0.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang WJ, Liu SG, Zhang XY, Luo HQ, Li NB. Ratiometric assay of mercury ion based on nitrogen-doped carbon dots with two different optical signals: second-order scattering and fluorescence. Anal Bioanal Chem. 2020;412(18):4375–82. https://doi.org/10.1007/s00216-020-02676-8.

    Article  CAS  PubMed  Google Scholar 

  35. Dong Y, Pang H, Yang HB, Guo C, Shao J, Chi Y, Li CM, Yu T. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angewandte Chemie-Int Ed. 2013;52(30):7800–4. https://doi.org/10.1002/anie.201301114.

    Article  CAS  Google Scholar 

  36. Xia C, Hai X, Chen X-W, Wang J-H. Simultaneously fabrication of free and solidified N, S-doped graphene quantum dots via a facile solvent-free synthesis route for fluorescent detection. Talanta. 2017;168:269–78. https://doi.org/10.1016/j.talanta.2017.03.040.

    Article  CAS  PubMed  Google Scholar 

  37. Ge J, Jia Q, Liu W, Guo L, Liu Q, Lan M, Zhang H, Meng X, Wang P. Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Adv Mater. 2015;27(28):4169–77. https://doi.org/10.1002/adma.201500323.

    Article  CAS  PubMed  Google Scholar 

  38. Zheng XT, Ananthanarayanan A, Luo KQ, Chen P. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small. 2015;11(14):1620–36. https://doi.org/10.1002/smll.201402648.

    Article  CAS  PubMed  Google Scholar 

  39. Liu Y, Liu Y, Park S-J, Zhang Y, Kim T, Chae S, Park M, Kim H-Y. One-step synthesis of robust nitrogen-doped carbon dots: acid-evoked fluorescence enhancement and their application in Fe3+ detection. J Mater Chem A. 2015;3(34):17747–54. https://doi.org/10.1039/c5ta05189d.

    Article  CAS  Google Scholar 

  40. Gao X, Lu Y, Zhang R, He S, Ju J, Liu M, Li L, Chen W. One-pot synthesis of carbon nanodots for fluorescence turn-on detection of Ag+ based on the Ag+-induced enhancement of fluorescence. J Mater Chem C. 2015;3(10):2302–9. https://doi.org/10.1039/c4tc02582b.

    Article  CAS  Google Scholar 

  41. Yang Z, Xu M, Liu Y, He F, Gao F, Su Y, Wei H, Zhang Y. Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate. Nanoscale. 2014;6(3):1890–5. https://doi.org/10.1039/c3nr05380f.

    Article  CAS  PubMed  Google Scholar 

  42. Li Z, Yu H, Bian T, Zhao Y, Zhou C, Shang L, Liu Y, Wu L-Z, Tung C-H, Zhang T. Highly luminescent nitrogen-doped carbon quantum dots as effective fluorescent probes for mercuric and iodide ions. J Mater Chem C. 2015;3(9):1922–8. https://doi.org/10.1039/c4tc02756f.

    Article  CAS  Google Scholar 

  43. Shen J, Zhu Y, Yang X, Li C. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun. 2012;48(31):3686–99. https://doi.org/10.1039/c2cc00110a.

    Article  CAS  Google Scholar 

  44. Wei Z, Li H, Liu S, Wang W, Chen H, Xiao L, Ren C, Chen X. Carbon dots as fluorescent/colorimetric probes for real-time detection of hypochlorite and ascorbic acid in cells and body fluid. Anal Chem. 2019;91(24):15477–83. https://doi.org/10.1021/acs.analchem.9b03272.

    Article  CAS  PubMed  Google Scholar 

  45. Lin Y, Yao B, Huang T, Zhang S, Cao X, Weng W. Selective determination of free dissolved chlorine using nitrogen-doped carbon dots as a fluorescent probe. Microchim Acta. 2016;183(7):2221–7. https://doi.org/10.1007/s00604-016-1855-y.

    Article  CAS  Google Scholar 

  46. Zhang Q, Hu X, Dai X, Ling P, Sun J, Chen H, Gao F. General strategy to achieve color-tunable ratiometric two-photon integrated single semiconducting polymer dot for imaging hypochlorous acid. ACS Nano. 2021;15(8):13633–45. https://doi.org/10.1021/acsnano.1c04581.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Key Research and Development Program of China (2017YFA0207003), the National Natural Science Foundation of China (21775042, 22176044, and 82001957), and the start fund of GDUPT (519166 and 519167).

Author information

Authors and Affiliations

Authors

Contributions

Yiming Bu: methodology, investigation, data curation, and writing—original draft.

Long Yu: methodology and investigation

Pengchen Su: methodology and software

Lingxiao Wang: methodology and software

Zhenli Sun: review and editing

Mingtai Sun: supervision

Xiangke Wang: review and editing

Dejian Huang: review and editing

Suhua Wang: supervision and writing—review and editing

Corresponding author

Correspondence to Suhua Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 944 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, Y., Yu, L., Su, P. et al. Green-emitting carbon quantum dots as a dual-mode fluorescent and colorimetric sensor for hypochlorite. Anal Bioanal Chem 414, 2651–2660 (2022). https://doi.org/10.1007/s00216-022-03901-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-03901-2

Keywords

Navigation