Skip to main content
Log in

Selective ratiometric fluorescence detection of hypochlorite by using aggregation-induced emission dots

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The development of simple and effective tools for selective ratiometric detection of hypochlorite (ClO) is one of the most important goals for elucidating the biofunction of ClO in associated diseases. However, most developmental probes suffer from the notorious aggregation-caused quenching (ACQ) effect that greatly limits their applications. Herein, we report on novel aggregation-induced emission dots (AIED) for ratiometric detection of ClO via a co-precipitation strategy. The AIED nanoprobe displayed a ratiometric signal output, which was more promising to minimize the bad environmental factors and simultaneously avoided the ACQ effect. Notably, amphiphilic block copolymer endowed the nanoprobe with stable water dispersibility and easy modification. The as-prepared AIED probe exhibited high sensitivity (~ 89 nM), high selectivity, outstanding photostability, and prominent long-term fluorescence stability. Furthermore, the as-prepared AIED was applied for the visualized fluorescence detection of ClO and further utilized to detect ClO in real samples. We expect the nanoprobe to be an outstanding tool to understand ClO-associated diseases.

Illustration of the probe for the detection of ClO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Casciaro M, Di SE, Pace E, Ventura-Spagnolo E, Navarra M, Gangemi S. Chlorinative stress in age-related diseases: a literature review. Immun Ageing. 2017;14:21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–47.

    Article  CAS  Google Scholar 

  3. Winterbourn CC. Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol. 2008;4(5):278–86.

    Article  CAS  PubMed  Google Scholar 

  4. Hampton MB, Kettle AJ, Winterbourn CC. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood. 1998;92(9):3007–17.

    CAS  PubMed  Google Scholar 

  5. Pattison DI, Davies MJ. Reactions of myeloperoxidase-derived oxidants with biological substrates: gaining chemical insight into human inflammatory diseases. Curr Med Chem. 2006;13(27):3271–90.

    Article  CAS  PubMed  Google Scholar 

  6. Benhar M, Engelberg D, Levitzki A. ROS, stress-activated kinases and stress signaling in cancer. EMBO Rep. 2002;3(5):420–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aoki T, Munemori M. Continuous flow determination of free chlorine in water. Anal Chem. 1983;55(2):209–12.

    Article  CAS  Google Scholar 

  8. WHO. Chapter 8. Chemical aspects. Guidelines for drinking-water quality, 4th ed. Geneva: World Health Organization, 2011; p 187.

  9. He Y, Xu Y, Shang Y, Zheng S, Chen W, Pang Y. An ESIPT-based fluorescent probe for the determination of hypochlorous acid (HClO): mechanism study and its application in cell imaging. Anal Bioanal Chem. 2018;410(27):7007–17.

    Article  CAS  PubMed  Google Scholar 

  10. He L, Dong B, Liu Y, Lin W. Fluorescent chemosensors manipulated by dual/triple interplaying sensing mechanisms. Chem Soc Rev. 2016;45(23):6449–61.

    Article  CAS  PubMed  Google Scholar 

  11. Chen X, Wang F, Hyun JY, Wei T, Qiang J, Ren X, et al. Recent progress in the development of fluorescent, luminescent and colorimetric probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev. 2016;45(10):2976–3016.

    Article  CAS  PubMed  Google Scholar 

  12. Lin VS, Chen W, Xian M, Chang CJ. Chemical probes for molecular imaging and detection of hydrogen sulfide and reactive sulfur species in biological systems. Chem Soc Rev. 2015;44(14):4596–618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu C, Liu L, Yang Q, Lv F, Wang S. Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem Rev. 2012;112(8):4687–735.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang P, Wang H, Zhang D, Zeng X, Zeng R, Xiao L, et al. Two-photon fluorescent probe for lysosome-targetable hypochlorous acid detection within living cells. Sensors Actuators B Chem. 2018;255:2223–31.

    Article  CAS  Google Scholar 

  15. Chen X, Pradhan T, Wang F, Kim JS, Yoon J. Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem Rev. 2012;112(3):1910–56.

    Article  CAS  PubMed  Google Scholar 

  16. Wang H, Zhang P, Tian Y, Zhang Y, Yang H, Chen S, et al. Real-time monitoring of endogenous cysteine levels in living cells using a CD-based ratiometric fluorescent nanoprobe. Anal Bioanal Chem. 2018;410(18):4379–86.

    Article  CAS  PubMed  Google Scholar 

  17. Zhu H, Fan J, Xu Q, Li H, Wang J, Gao P, et al. Imaging of lysosomal pH changes with a fluorescent sensor containing a novel lysosome-locating group. Chem Commun. 2012;48(96):11766–8.

    Article  CAS  Google Scholar 

  18. Zhang P, Tian Y, Liu H, Ren J, Wang H, Zeng R, et al. In vivo imaging of hepatocellular nitric oxide using a hepatocyte-targeting fluorescent sensor. Chem Commun. 2018;54:7231–4.

    Article  CAS  Google Scholar 

  19. Chen W, Liu C, Peng B, Zhao Y, Pacheco A, Xian M. New fluorescent probes for sulfane sulfurs and the application in bioimaging. Chem Sci. 2013;4(7):2892–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yuan L, Wang L, Agrawalla BK, Park SJ, Zhu H, Sivaraman B, et al. Development of targetable two-photon fluorescent probes to image hypochlorous acid in mitochondria and lysosome in live cell and inflamed mouse model. J Am Chem Soc. 2015;137(18):5930–8.

    Article  CAS  PubMed  Google Scholar 

  21. Wang H, Zhang P, Chen J, Li Y, Yu M, Long Y, et al. Polymer nanoparticle-based ratiometric fluorescent probe for imaging Hg2+ ions in living cells. Sensors Actuators B Chem. 2017;242:818–24.

    Article  CAS  Google Scholar 

  22. Zhang H, Liu J, Liu C, Yu P, Sun M, Yan X, et al. Imaging lysosomal highly reactive oxygen species and lighting up cancer cells and tumors enabled by a Si-rhodamine-based near-infrared fluorescent probe. Biomaterials. 2017;133:60–9.

    Article  CAS  PubMed  Google Scholar 

  23. Chen W, Pacheco A, Takano Y, Day JJ, Hanaoka K, Xian M. A single fluorescent probe to visualize hydrogen sulfide and hydrogen polysulfides with different fluorescence signals. Angew Chem Int Ed. 2016;55(34):9993–6.

    Article  CAS  Google Scholar 

  24. Ouadahi K, Sbargoud K, Allard E, Larpent C. FRET-mediated pH-responsive dual fluorescent nanoparticles prepared via click chemistry. Nanoscale. 2012;4(3):727–32.

    Article  CAS  PubMed  Google Scholar 

  25. Lv J, Wang F, Wei T, Chen X. Highly sensitive and selective fluorescent probes for the detection of HOCl/OCl based on fluorescein derivatives. Ind Eng Chem Res. 2017;56(13):3757–64.

    Article  CAS  Google Scholar 

  26. Zhu B, Wu L, Zhang M, Wang Y, Liu C, Wang Z, et al. A highly specific and ultrasensitive near-infrared fluorescent probe for imaging basal hypochlorite in the mitochondria of living cells. Biosens Bioelectron. 2018;107:218–23.

    Article  CAS  PubMed  Google Scholar 

  27. Yin C, Zhu H, Xie C, Zhang L, Chen P, Fan Q, et al. Organic nanoprobe cocktails for multilocal and multicolor fluorescence imaging of reactive oxygen species. Adv Funct Mater. 2017;27(23):1700493.

    Article  CAS  Google Scholar 

  28. Yin C, Zhen X, Fan Q, Huang W, Pu K. Degradable semiconducting oligomer amphiphile for ratiometric photoacoustic imaging of hypochlorite. ACS Nano. 2017;11(4):4174–82.

    Article  CAS  PubMed  Google Scholar 

  29. Chen J, Zhang C, Lv K, Wang H, Zhang P, Yi P, et al. A silica nanoparticle-based dual-responsive ratiometric probe for visualizing hypochlorite and temperature with distinct fluorescence signals. Sensors Actuators B Chem. 2017;251:533–41.

    Article  CAS  Google Scholar 

  30. Zhang KY, Zhang J, Liu Y, Liu S, Zhang P, Zhao Q, et al. Core-shell structured phosphorescent nanoparticles for detection of exogenous and endogenous hypochlorite in live cells via ratiometric imaging and photoluminescence lifetime imaging microscopy. Chem Sci. 2015;6(1):301–7.

    Article  CAS  PubMed  Google Scholar 

  31. Huang Y, Zhang P, Gao M, Zeng F, Qin A, Wu S, et al. Ratiometric detection and imaging of endogenous hypochlorite in live cells and in vivo achieved by using an aggregation induced emission (AIE)-based nanoprobe. Chem Commun. 2016;52(45):7288–91.

    Article  CAS  Google Scholar 

  32. Wang H, Zhang P, Hong Y, Zhao B, Yi P, Chen J. Ratiometric imaging of lysosomal hypochlorous acid enabled by FRET-based polymer dots. Polym Chem. 2017;8(37):5795–802.

    Article  CAS  Google Scholar 

  33. Huang X, Song J, Yung BC, Huang X, Xiong Y, Chen X. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem Soc Rev. 2018;47(8):2873–920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang P, Wang H, Hong Y, Yu M, Zeng R, Long Y, et al. Selective visualization of endogenous hypochlorous acid in zebrafish during lipopolysaccharide-induced acute liver injury using a polymer micelles-based ratiometric fluorescent probe. Biosens Bioelectron. 2018;99:318–24.

    Article  CAS  PubMed  Google Scholar 

  35. Yu C, Li X, Zeng F, Zheng F, Wu S. Carbon-dot-based ratiometric fluorescent sensor for detecting hydrogen sulfide in aqueous media and inside live cells. Chem Commun. 2013;49(4):403–5.

    Article  CAS  Google Scholar 

  36. Chen G, Song F, Wang J, Yang Z, Sun S, Fan J, et al. FRET spectral unmixing: a ratiometric fluorescent nanoprobe for hypochlorite. Chem Commun. 2012;48(24):2949–51.

    Article  CAS  Google Scholar 

  37. Zhang YR, Chen XP, Jing S, Zhang JY, Yuan Q, Miao JY, et al. A ratiometric fluorescent probe for sensing HOCl based on a coumarin-rhodamine dyad. Chem Commun. 2014;50(91):14241–4.

    CAS  Google Scholar 

  38. Ding D, Li K, Liu B, Tang BZ. Bioprobes based on AIE fluorogens. Acc Chem Res. 2013;46(11):2441–53.

    Article  CAS  PubMed  Google Scholar 

  39. Li K, Liu B. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem Soc Rev. 2014;43(18):6570–97.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang P, Nie X, Gao M, Zeng F, Qin A, Wu S, et al. A highly selective fluorescent nanoprobe based on AIE and ESIPT for imaging hydrogen sulfide in live cells and zebrafish. Mater Chem Front. 2017;1(5):838–45.

    Article  CAS  Google Scholar 

  41. Hong Y, Lam JW, Tang BZ. Aggregation-induced emission. Chem Soc Rev. 2011;40(11):5361–88.

    Article  CAS  PubMed  Google Scholar 

  42. Qian J, Tang BZ. AIE luminogens for bioimaging and theranostics: from organelles to animals. Chem. 2017;3(1):56–91.

    Article  CAS  Google Scholar 

  43. Yuan Y, Xu S, Cheng X, Cai X, Liu B. Bioorthogonal turn-on probe based on aggregation-induced emission characteristics for cancer cell imaging and ablation. Angew Chem Int Ed. 2016;55(22):6457–61.

    Article  CAS  Google Scholar 

  44. Situ B, Chen S, Zhao E, Leung CWT, Chen Y, Hong Y, et al. Real-time imaging of cell behaviors in living organisms by a mitochondria-targeting AIE fluorogen. Adv Funct Mater. 2016;26(39):7132–8.

    Article  CAS  Google Scholar 

  45. Liang J, Tang BZ, Liu B. Specific light-up bioprobes based on AIEgen conjugates. Chem Soc Rev. 2015;44(10):2798–811.

    Article  CAS  PubMed  Google Scholar 

  46. Yan X, Remond M, Zheng Z, Hoibian E, Soulage C, Chambert S, et al. General and scalable approach to bright, stable, and functional AIE fluorogen colloidal nanocrystals for in vivo imaging. ACS Appl Mater Interfaces. 2018;10(30):25154–65.

    Article  CAS  PubMed  Google Scholar 

  47. Feng G, Liu B. Aggregation-induced emission (AIE) dots: emerging theranostic nanolights. Acc Chem Res. 2018;51(6):1404–14.

    Article  CAS  PubMed  Google Scholar 

  48. Li K, Zhu Z, Cai P, Liu R, Tomczak N, Ding D, et al. Organic dots with aggregation-induced emission (AIE dots) characteristics for dual-color cell tracing. Chem Mater. 2013;25(21):4181–7.

    Article  CAS  Google Scholar 

  49. Sheng Z, Guo B, Hu D, Xu S, Wu W, Liew WH, et al. Bright aggregation-induced-emission dots for targeted synergetic NIR-II fluorescence and NIR-I photoacoustic imaging of orthotopic brain tumors. Adv Mater. 2018;30:1800766.

    Article  CAS  Google Scholar 

  50. Qin W, Li K, Feng G, Li M, Yang Z, Liu B, et al. Bright and photostable organic fluorescent dots with aggregation-induced emission characteristics for noninvasive long-term cell imaging. Adv Funct Mater. 2014;24(5):635–43.

    Article  CAS  Google Scholar 

  51. Mei J, Huang Y, Tian H. Progress and trends in AIE-based bioprobes: a brief overview. ACS Appl Mater Interfaces. 2018;10(15):12217–61.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang P, Hong Y, Wang H, Yu M, Gao Y, Zeng R, et al. Selective visualization of endogenous hydrogen sulfide in lysosomes using aggregation induced emission dots. Polym Chem. 2017;8(46):7271–8.

    Article  CAS  Google Scholar 

  53. Wang L, Zhuo S, Tang H, Cao D. A near-infrared turn on fluorescent probe for cysteine based on organic nanoparticles. Sensors Actuators B Chem. 2018;277:437–44.

    Article  CAS  Google Scholar 

  54. Song Z, Mao D, Sung SH, Kwok RT, Lam JW, Kong D, et al. Activatable fluorescent nanoprobe with aggregation-induced emission characteristics for selective in vivo imaging of elevated peroxynitrite generation. Adv Mater. 2016;28(33):7249–56.

    Article  CAS  PubMed  Google Scholar 

  55. Ding A-X, Shi Y-D, Zhang K-X, Sun W, Tan Z-L, Lu Z-L, et al. Self-assembled aggregation-induced emission micelle (AIE micelle) as interfacial fluorescence probe for sequential recognition of Cu2+ and ATP in water. Sensors Actuators B Chem. 2018;255:440–7.

    Article  CAS  Google Scholar 

  56. Wu Y, Huang S, Zeng F, Wang J, Yu C, Huang J, et al. A ratiometric fluorescent system for carboxylesterase detection with AIE dots as FRET donors. Chem Commun. 2015;51(64):12791–4.

    Article  CAS  Google Scholar 

  57. Zhang Z, Fan J, Cheng G, Ghazali S, Du J, Peng X. Fluorescence completely separated ratiometric probe for HClO in lysosomes. Sensors Actuators B Chem. 2017;246:293–9.

    Article  CAS  Google Scholar 

  58. Cheng G, Fan J, Sun W, Sui K, Jin X, Wang J, et al. A highly specific BODIPY-based probe localized in mitochondria for HClO imaging. Analyst. 2013;138(20):6091–6.

    Article  CAS  PubMed  Google Scholar 

  59. Park J, Kim H, Choi Y, Kim Y. A ratiometric fluorescent probe based on a BODIPY-DCDHF conjugate for the detection of hypochlorous acid in living cells. Analyst. 2013;138(12):3368–71.

    Article  CAS  PubMed  Google Scholar 

  60. Chen L-D, Ding H-L, Wang N, An Y, Lü C-W. Two highly selective and sensitive fluorescent probes design and apply to specific detection of hypochlorite. Dyes Pigments. 2019;161:510–8.

    Article  CAS  Google Scholar 

  61. Yue Y, Huo F, Li X, Wen Y, Yi T, Salamanca J, et al. pH-dependent fluorescent probe that can be tuned for cysteine or homocysteine. Org Lett. 2017;19(1):82–5.

    Article  CAS  PubMed  Google Scholar 

  62. Jiang X, Yu Y, Chen J, Zhao M, Chen H, Song X, et al. Quantitative imaging of glutathione in live cells using a reversible reaction-based ratiometric fluorescent probe. ACS Chem Biol. 2015;10(3):864–74.

    Article  CAS  PubMed  Google Scholar 

  63. Kim G-J, Lee K, Kwon H, Kim H-J. Ratiometric fluorescence imaging of cellular glutathione. Org Lett. 2011;13(11):2799–801.

    Article  CAS  PubMed  Google Scholar 

  64. Jiang M, Gu X, Lam JWY, Zhang Y, Kwok RTK, Wong KS, et al. Two-photon AIE bio-probe with large stokes shift for specific imaging of lipid droplets. Chem Sci. 2017;8(8):5440–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support of the NSFC (51773056, 51603067, 51873058, 21705040, 51373002), Hunan Provincial Natural Science Foundation of China (2018JJ3143), China Postdoctoral Science Foundation (2017 M622571, 2017 M622568 and 2018 T110824), Open Project Program of State Key Laboratory of Chemo/Biosensing and Chemometrics (2016019), Open Project Program of Key Laboratory for High Performance and Functional Polymer Materials of Guangdong Province (South China University of Technology) (20160005) and Hunan Provincial Innovation Foundation For Postgraduate (CX2017B622).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peisheng Zhang or Jian Chen.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1080 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., He, Y., Li, Y. et al. Selective ratiometric fluorescence detection of hypochlorite by using aggregation-induced emission dots. Anal Bioanal Chem 411, 1979–1988 (2019). https://doi.org/10.1007/s00216-019-01653-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01653-0

Keywords

Navigation