Skip to main content
Log in

Determination of long-chain fatty acids in anaerobic digester supernatant and olive mill wastewater exploiting an in-syringe dispersive liquid-liquid microextraction and derivatization-free GC-MS method

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Long-chain fatty acids (LCFA) are commonly found in lipid-rich wastewaters and are a key factor to monitor the anaerobic digesters. A new simple, fast, precise, and suitable method for routine analysis of LCFA is proposed. The system involves in-syringe-magnetic stirring-assisted dispersive liquid-liquid microextraction (DLLME) prior to gas chromatography-mass spectrometry (GC-MS) without a derivatization process. Calibration curves were prepared in an ethanol solution (R2 ≥ 0.996), which was also useful as disperser solvent. Hexane was chosen as the extraction solvent. Several parameters (pH, ionic strength, extraction solvent volume, stirring time) were optimized in multivariate and univariate studies. Limits of detection (LODs) were found in the range 0.01–0.05 mg L−1 and good precision inter-day (RSDs≤7.9%) and intra-day (RSDs≤4.4%) were obtained. The method was applied to quantify LCFA in supernatants of anaerobic digesters and olive mill wastewaters (OMW). Palmitic, stearic, and oleic acids were the most abundant fatty acid in the analyzed samples and the relative recoveries for all of them were between 81 and 113%.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stoll U, Gupta H. Management strategies for oil and grease residues. Waste Manag Res. 1997;15:23–32.

    Article  CAS  Google Scholar 

  2. Kabouris JC, Tezel U, Pavlostathis SG, Engelmann M, Dulaney JA, Todd AC, et al. Mesophilic and thermophilic anaerobic digestion of municipal sludge and fat, oil, and grease. Water Environ Res. 2009;81:476–85.

    Article  CAS  PubMed  Google Scholar 

  3. Chipasa KB, Mȩdrzycka K. Behavior of lipids in biological wastewater treatment processes. J Ind Microbiol Biotechnol. 2006;33:635–45.

    Article  CAS  PubMed  Google Scholar 

  4. Chowdhury B, Lin L, Dhar BR, Islam MN, McCartney D, Kumar A. Enhanced biomethane recovery from fat, oil, and grease through co-digestion with food waste and addition of conductive materials. Chemosphere. 2019;236:124362.

    Article  CAS  PubMed  Google Scholar 

  5. Singh S, Rinta-Kanto JM, Kettunen R, Tolvanen H, Lens P, Collins G, et al. Anaerobic treatment of LCFA-containing synthetic dairy wastewater at 20 °C: process performance and microbial community dynamics. Sci Total Environ. 2019;691:960–8.

    Article  CAS  PubMed  Google Scholar 

  6. Farrington JW, Quinn JG. Petroleum hydrocarbons and fatty acids in wastewater effluents. J Water Pollut Control Fed. 1973;45:704–12.

    CAS  Google Scholar 

  7. Cadavid-Rodríguez LS, Vargas-Muñoz MA, Plácido J. Biomethane from fish waste as a source of renewable energy for artisanal fishing communities. Sustain Energy Technol Assessments. 2019;34:110–5.

    Article  Google Scholar 

  8. Ning Z, Zhang H, Li W, Zhang R, Liu G, Chen C. Anaerobic digestion of lipid-rich swine slaughterhouse waste: methane production performance, long-chain fatty acids profile and predominant microorganisms. Bioresour Technol. 2018;269:426–33.

    Article  CAS  PubMed  Google Scholar 

  9. Kobayashi T, Kuramochi H, Maeda K, Xu K. A simple method for the detection of long-chain fatty acids in an anaerobic digestate using a quartz crystal sensor. Energies. 2017;10:1–14.

    Google Scholar 

  10. Khdair AI, Abu-Rumman G, Khdair SI. Pollution estimation from olive mills wastewater in Jordan. Heliyon. 2019;5:e02386.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Angelidaki I, Ahring BK. Effects of free long-chain fatty acids on thermophilic anaerobic digestion. Appl Microbiol Biotechnol. 1992;37:808–12.

    Article  CAS  Google Scholar 

  12. Chen JL, Ortiz R, Steele TWJ, Stuckey DC. Toxicants inhibiting anaerobic digestion: a review. Biotechnol Adv. 2014;32:1523–34.

    Article  PubMed  Google Scholar 

  13. Lalman JA, Bagley DM. Extracting long-chain fatty acids from a fermentation medium. JAOCS, J Am Oil Chem Soc. 2004;81:105–10.

    Article  CAS  Google Scholar 

  14. Siang GH, Makahleh A, Saad B, Lim BP. Hollow fiber liquid-phase microextraction coupled with gas chromatography-flame ionization detection for the profiling of fatty acids in vegetable oils. J Chromatogr A. 2010;1217:8073–8.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang H, Wang Z, Liu O. Development and validation of a GC-FID method for quantitative analysis of oleic acid and related fatty acids. J Pharm Anal. 2015;5:223–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aparicio-Ruiz R, García-González DL, Morales MT, Lobo-Prieto A, Romero I. Comparison of two analytical methods validated for the determination of volatile compounds in virgin olive oil: GC-FID vs GC-MS. Talanta. 2018;187:133–41.

    Article  CAS  PubMed  Google Scholar 

  17. Vičanová J, Tvrzická E, Štulík K. Capillary gas chromatography of underivatized fatty acids with a free fatty acid phase column and a programmed temperature vaporizer injector. J Chromatogr B. 1994;656:45–50.

    Article  Google Scholar 

  18. Kaluzny MA, Duncan LA, Merritt MV, Epps DE. Rapid separation of lipid classes in high yield and purity using bonded phase columns. J Lipid Res. 1985;26:135–40.

    Article  CAS  PubMed  Google Scholar 

  19. Jiang Y, Zhang Y, Banks CJ. Determination of long chain fatty acids in anaerobic digesters using a rapid non-derivatisation GC-FID method. Water Sci Technol. 2012;66:741–7.

    Article  CAS  PubMed  Google Scholar 

  20. Añorve-Morga J, Castañeda-Ovando A, Cepeda-Saez A, Archibold AD, Jaimez-Ordaz J, Contreras-López E, et al. Microextraction method of medium and long chain fatty acids from milk. Food Chem. 2015;172:456–61.

    Article  PubMed  Google Scholar 

  21. Meng Z, Wen D, Sun D, Gao F, Li W, Liao Y, et al. Rapid determination of C12-C26 non-derivatized fatty acids in human serum by fast gas chromatography. J Sep Sci. 2007;30:1537–43.

    Article  CAS  PubMed  Google Scholar 

  22. Bligh EG, Dyer WJ. Rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–7.

    Article  CAS  PubMed  Google Scholar 

  23. Procida G, Ceccon L. Gas chromatographic determination of free fatty acids in olive mill waste waters. Anal Chim Acta. 2006;561:103–6.

    Article  CAS  Google Scholar 

  24. Neves L, Pereira MA, Mota M, Alves MM. Detection and quantification of long chain fatty acids in liquid and solid samples and its relevance to understand anaerobic digestion of lipids. Bioresour Technol. 2009;100:91–6.

    Article  CAS  PubMed  Google Scholar 

  25. Rezaee M, Yamini Y, Faraji M. Evolution of dispersive liquid-liquid microextraction method. J Chromatogr A. 2010;1217:2342–57.

    Article  CAS  PubMed  Google Scholar 

  26. Quigley A, Connolly D, Cummins W. The application of dispersive liquid–liquid microextraction in the analyses of the fatty acid profile in bovine milk in response to changes in body condition score. J Chromatogr B. 2018;1073:130–5.

    Article  CAS  Google Scholar 

  27. Pusvaskiene E, Januskevic B, Prichodko A, Vickackaite V. Simultaneous derivatization and dispersive liquid-liquid microextraction for fatty acid GC determination in water. Chromatographia. 2009;69:271–6.

    Article  CAS  Google Scholar 

  28. Makoś P, Fernandes A, Boczkaj G. Method for the determination of carboxylic acids in industrial effluents using dispersive liquid-liquid microextraction with injection port derivatization gas chromatography–mass spectrometry. J Chromatogr A. 2017;1517:26–34.

    Article  PubMed  Google Scholar 

  29. Horstkotte B, Suárez R, Solich P, Cerdà V. In-syringe-stirring: a novel approach for magnetic stirring-assisted dispersive liquid-liquid microextraction. Anal Chim Acta. 2013;788:52–60.

    Article  CAS  PubMed  Google Scholar 

  30. Maya F, Horstkotte B, Estela JM, Cerdà V. Lab in a syringe: fully automated dispersive liquid-liquid microextraction with integrated spectrophotometric detection. Anal Bioanal Chem. 2012;404:909–17.

    Article  CAS  PubMed  Google Scholar 

  31. Clavijo S, Avivar J, Suárez R, Cerdà V. In-syringe magnetic stirring-assisted dispersive liquid-liquid microextraction and silylation prior gas chromatography-mass spectrometry for ultraviolet filters determination in environmental water samples. J Chromatogr A. 2016;1443:26–34.

    Article  CAS  PubMed  Google Scholar 

  32. Alexovič M, Horstkotte B, Šrámková I, Solich P, Sabo J. Automation of dispersive liquid–liquid microextraction and related techniques. Approaches based on flow, batch, flow-batch and in-syringe modes. TrAC - Trends Anal Chem. 2017;86:39–55.

    Article  Google Scholar 

  33. Pruksatrakul T, Phoopraintra P, Wilairat P, Chaiyen P, Chantiwas R. Development of a sequential injection-liquid microextraction procedure with GC-FID for analysis of short-chain fatty acids in palm oil mill effluent. Talanta. 2017;165:612–8.

    Article  CAS  PubMed  Google Scholar 

  34. International Union of Pure and Applied Chemistry IUPAC. Harmonized guidelines for single-laboratory validation of methods of analysis.

  35. Barwick VJ. Strategies for solvent selection - a literature review. TrAC - Trends Anal Chem. 1997;16:293–309.

    Article  CAS  Google Scholar 

  36. Mansour EA, Abo El-Enin SA, Hamouda AS, Mahmoud HM. Efficacy of extraction techniques and solvent polarity on lipid recovery from domestic wastewater microalgae. Environ Nanotechnology, Monit Manag. 2019;12:100271.

    Article  Google Scholar 

  37. Cistola DP, Hamilton JA, Jackson D, Small DM. Ionization and phase behavior of fatty acids in water: application of the Gibbs phase rule. Biochemistry. 1988;27:1881–8.

    Article  CAS  PubMed  Google Scholar 

  38. Rahman MA, Ghosh AK, Bose RN. Dissociation constants of long chain fatty acids in methanol-water and ethanol-water mixtures. J Chem Technol Biotechnol. 2007;29:158–62.

    Article  Google Scholar 

  39. Kanicky JR, Shah DO. Effect of degree, type, and position of unsaturation on the pKa of long-chain fatty acids. J Colloid Interface Sci. 2002;256:201–7.

    Article  CAS  PubMed  Google Scholar 

  40. Pan L, Adams M, Pawliszyn J. Determination of fatty acids using solid phase microextraction. Anal Chem. 1995;67:4396–403.

    Article  CAS  Google Scholar 

  41. González Casado A, Alonso Hernández EJ, Vílchez JL. Determination of fatty acids (C8-C22) in urban wastewater by GC-MS. Water Res. 1998;32:3168–72.

    Article  Google Scholar 

  42. Wu J, Lee HK. Ion-pair dynamic liquid-phase microextraction combined with injection-port derivatization for the determination of long-chain fatty acids in water samples. J Chromatogr A. 2006;1133:13–20.

    Article  CAS  PubMed  Google Scholar 

  43. National Center for Biotechnology Information (2020). PubChem compound summary for CID 23665730, Sodium oleate. https://pubchem.ncbi.nlm.nih.gov/compound/Sodium-oleate

  44. Chan PC, de Toledo RA, Shim H. Anaerobic co-digestion of food waste and domestic wastewater – effect of intermittent feeding on short and long chain fatty acids accumulation. Renew Energy. 2018;124:129–35.

    Article  CAS  Google Scholar 

  45. Alves MM, Pereira MA, Sousa DZ, Cavaleiro AJ, Picavet M, Smidt H, et al. Waste lipids to energy: how to optimize methane production from long-chain fatty acids (LCFA). Microb Biotechnol. 2009;2:538–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Marie Wong, Laurence Eyres LR. Green vegetable oil processing: 2- modern aqueous oil extraction—centrifugation systems for olive and avocado oils, First ed. Elsevier.

Download references

Acknowledgements

Thanks to Emaya and La Almazara de Can Det (olive oil company) for the provision of wastewater samples.

Funding

The authors received financial support from the Comunitat Autonoma de les Illes Balears through the Direcció General de Política Universitaria i Recerca with funds from the Tourist Stay Tax Law (PRD2018/45). M.A.V-M. received the support from the Spanish Ministry of Science, Innovation and Universities (MCIU) for the pre-doctoral research fellowship (FPU19/06082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin Palacio.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOC 717 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas-Muñoz, M.A., Cerdà, V., Turnes Palomino, G. et al. Determination of long-chain fatty acids in anaerobic digester supernatant and olive mill wastewater exploiting an in-syringe dispersive liquid-liquid microextraction and derivatization-free GC-MS method. Anal Bioanal Chem 413, 3833–3845 (2021). https://doi.org/10.1007/s00216-021-03338-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03338-z

Keywords

Navigation