Skip to main content
Log in

High-performance thin-layer chromatography in combination with a yeast-based multi-effect bioassay to determine endocrine effects in environmental samples

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Effect-directed analysis (EDA) that combines effect-based methods (EBMs) with high-performance thin-layer chromatography (HPTLC) is a useful technique for spatial, temporal, and process-related effect evaluation and may provide a link between effect testing and responsible substance identification. In this study, a yeast multi endocrine-effect screen (YMEES) for the detection of endocrine effects is combined with HPTLC. Simultaneous detection of estrogenic, androgenic, and gestagenic effects on the HPTLC plate is achieved by mixing different genetically modified Arxula adeninivorans yeast strains, which contain either the human estrogen, androgen, or progesterone receptor. Depending on the yeast strain, different fluorescent proteins are formed when an appropriate substance binds to the specific hormone receptor. This allows to measure hormonal effects at different wavelengths. Two yeast cell application approaches, immersion and spraying, are compared. The sensitivity and reproducibility of the method are shown by dose-response investigations for reference compounds. The spraying approach indicated similar sensitivities and higher precisions for the tested hormones compared to immersion. The EC10s for estrone (E1), 17β-estradiol (E2), 17α-ethinylestradiol (EE2), 5α-dihydrotestosterone (DHT), and progesterone (P4) were 95, 1.4, 10, 7.4, and 15 pg/spot, respectively. Recovery rates of E1, E2, EE2, DHT, and P4 between 88 and 120% show the usability of the general method in combination with sample enrichment by solid phase extraction (SPE). The simultaneous detection of estrogenic, androgenic, and gestagenic effects in wastewater and surface water samples demonstrates the successful application of the YMEES in such matrices. This promising method allows us to identify more than one endocrine effect on the same HPTLC plate, which saves time and material. The method could be used for comparison, evaluation, and monitoring of different river sites and wastewater treatment steps and should be tested in further studies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Rogowska J, Cieszynska-Semenowicz M, Ratajczyk W, Wolska L. Micropollutants in treated wastewater. Ambio. 2019;49(2):487–503. https://doi.org/10.1007/s13280-019-01219-5.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Henneberg A, Bender K, Blaha L, Giebner S, Kuch B, Kohler HR, et al. Are in vitro methods for the detection of endocrine potentials in the aquatic environment predictive for in vivo effects? Outcomes of the projects SchussenAktiv and SchussenAktivplus in the Lake Constance area, Germany. PLoS One. 2014;9(6):e98307. https://doi.org/10.1371/journal.pone.0098307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gehrmann L, Bielak H, Behr M, Itzel F, Lyko S, Simon A, et al. (Anti-)estrogenic and (anti-)androgenic effects in wastewater during advanced treatment: comparison of three in vitro bioassays. Environ Sci Pollut Res Int. 2018;25(5):4094–104. https://doi.org/10.1007/s11356-016-7165-4.

    Article  CAS  PubMed  Google Scholar 

  4. Harth FUR, Arras C, Brettschneider DJ, Misovic A, Oehlmann J, Schulte-Oehlmann U, et al. Small but with big impact? Ecotoxicological effects of a municipal wastewater effluent on a small creek. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2018;53(13):1149–60. https://doi.org/10.1080/10934529.2018.1530328.

    Article  CAS  PubMed  Google Scholar 

  5. Itzel F, Jewell KS, Leonhardt J, Gehrmann L, Nielsen U, Ternes TA, et al. Comprehensive analysis of antagonistic endocrine activity during ozone treatment of hospital wastewater. Sci Total Environ. 2018;624:1443–54. https://doi.org/10.1016/j.scitotenv.2017.12.181.

    Article  CAS  PubMed  Google Scholar 

  6. Fent K. Progestins as endocrine disrupters in aquatic ecosystems: concentrations, effects and risk assessment. Environ Int. 2015;84:115–30. https://doi.org/10.1016/j.envint.2015.06.012.

    Article  CAS  PubMed  Google Scholar 

  7. Chang H, Wan Y, Wu S, Fan Z, Hu J. Occurrence of androgens and progestogens in wastewater treatment plants and receiving river waters: comparison to estrogens. Water Res. 2011;45(2):732–40. https://doi.org/10.1016/j.watres.2010.08.046.

    Article  CAS  PubMed  Google Scholar 

  8. Commission Implementing Decision (EU) 2018/840 of 5 June 2018 Establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council and repealing Commission Implementing Decision (EU) 2015/495. Official Journal of the European Union

  9. Duft M, Schulte-Oehlmann U, Tillmann M, Markert B, Oehlmann J. Toxicity of triphenyltin and tributyltin to the freshwater mudsnail Potamopyrgus antipodarum in a new sediment biotest. Environ Toxicol Chem. 2003;22(1):145–52.

    CAS  PubMed  Google Scholar 

  10. Jobling S, Casey D, Rodgers-Gray T, Oehlmann J, Schulte-Oehlmann U, Pawlowski S, et al. Comparative responses of molluscs and fish to environmental estrogens and an estrogenic effluent. Aquat Toxicol. 2004;66(2):207–22. https://doi.org/10.1016/j.aquatox.2004.01.002.

    Article  CAS  PubMed  Google Scholar 

  11. Kidd KA, Blanchfield PJ, Mills KH, Palace VP, Evans RE, Lazorchak JM, et al. Collapse of a fish population after exposure to a synthetic estrogen. PNAS. 2007;104(21):8897–901. https://doi.org/10.1073/pnas.0609568104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aris AZ, Shamsuddin AS, Praveena SM. Occurrence of 17alpha-ethynylestradiol (EE2) in the environment and effect on exposed biota: a review. Environ Int. 2014;69:104–19. https://doi.org/10.1016/j.envint.2014.04.011.

    Article  CAS  PubMed  Google Scholar 

  13. Orlando EF, Ellestad LE. Sources, concentrations, and exposure effects of environmental gestagens on fish and other aquatic wildlife, with an emphasis on reproduction. Gen Comp Endocrinol. 2014;203:241–9. https://doi.org/10.1016/j.ygcen.2014.03.038.

    Article  CAS  PubMed  Google Scholar 

  14. Örn S, Holbech H, Norrgren L. Sexual disruption in zebrafish (Danio rerio) exposed to mixtures of 17alpha-ethinylestradiol and 17beta-trenbolone. Environ Toxicol Pharmacol. 2016;41:225–31. https://doi.org/10.1016/j.etap.2015.12.010.

    Article  CAS  PubMed  Google Scholar 

  15. Rivero-Wendt CL, Oliveira R, Monteiro MS, Domingues I, Soares AM, Grisolia CK. Steroid androgen 17alpha-methyltestosterone induces malformations and biochemical alterations in zebrafish embryos. Environ Toxicol Pharmacol. 2016;44:107–13. https://doi.org/10.1016/j.etap.2016.04.014.

    Article  CAS  PubMed  Google Scholar 

  16. Kuckelkorn J, Redelstein R, Heide T, Kunze J, Maletz S, Waldmann P, et al. A hierarchical testing strategy for micropollutants in drinking water regarding their potential endocrine-disrupting effects-towards health-related indicator values. Environ Sci Pollut Res Int. 2018;25(5):4051–65. https://doi.org/10.1007/s11356-017-0155-3.

    Article  CAS  PubMed  Google Scholar 

  17. Ziková A, Lorenz C, Hoffmann F, Kleiner W, Lutz I, Stöck M, et al. Endocrine disruption by environmental gestagens in amphibians - a short review supported by new in vitro data using gonads of Xenopus laevis. Chemosphere. 2017;181:74–82. https://doi.org/10.1016/j.chemosphere.2017.04.021.

    Article  CAS  PubMed  Google Scholar 

  18. Knoop O, Hohrenk LL, Lutze HV, Schmidt TC. Ozonation of tamoxifen and toremifene: reaction kinetics and transformation products. Environ Sci Technol. 2018;52(21):12583–91. https://doi.org/10.1021/acs.est.8b00996.

    Article  CAS  PubMed  Google Scholar 

  19. Knoop O, Itzel F, Tuerk J, Lutze HV, Schmidt TC. Endocrine effects after ozonation of tamoxifen. Sci Total Environ. 2018;622–623:71–8. https://doi.org/10.1016/j.scitotenv.2017.11.286.

    Article  CAS  PubMed  Google Scholar 

  20. Brack W, Aissa SA, Backhaus T, Dulio V, Escher BI, Faust M, et al. Effect-based methods are key. The European Collaborative Project SOLUTIONS recommends integrating effect-based methods for diagnosis and monitoring of water quality. Environ Sci Eur. 2019;31(1). https://doi.org/10.1186/s12302-019-0192-2.

  21. Schuetzle D, Lewtas J. Bioassay-directed chemical analysis in environmental research. Anal Chem. 1986;58(11):1060A–75A. https://doi.org/10.1021/ac00124a001.

    Article  CAS  PubMed  Google Scholar 

  22. Brack W. Effect-directed analysis: a promising tool for the identification of organic toxicants in complex mixtures? Anal Bioanal Chem. 2003;377(3):397–407. https://doi.org/10.1007/s00216-003-2139-z.

    Article  CAS  PubMed  Google Scholar 

  23. Brack W, editor. Effect-directed analysis of complex environmental contamination. The handbook of environmental chemistry. Berlin, Heidelberg: Springer; 2011.

    Google Scholar 

  24. Weller MG. A unifying review of bioassay-guided fractionation, effect-directed analysis and related techniques. Sensors (Basel). 2012;12(7):9181–209. https://doi.org/10.3390/s120709181.

    Article  CAS  Google Scholar 

  25. Brack W, Ait-Aissa S, Burgess RM, Busch W, Creusot N, Di Paolo C, et al. Effect-directed analysis supporting monitoring of aquatic environments--an in-depth overview. Sci Total Environ. 2016;544:1073–118. https://doi.org/10.1016/j.scitotenv.2015.11.102.

    Article  CAS  PubMed  Google Scholar 

  26. Muschket M, Di Paolo C, Tindall AJ, Touak G, Phan A, Krauss M, et al. Identification of unknown antiandrogenic compounds in surface waters by effect-directed analysis (EDA) using a parallel fractionation approach. Environ Sci Technol. 2018;52(1):288–97. https://doi.org/10.1021/acs.est.7b04994.

    Article  CAS  PubMed  Google Scholar 

  27. Hashmi MAK, Krauss M, Escher BI, Teodorovic I, Brack W. Effect-directed analysis of progestogens and glucocorticoids at trace concentrations in river water. Environ Toxicol Chem. 2020;39(1):189–99. https://doi.org/10.1002/etc.4609.

    Article  CAS  PubMed  Google Scholar 

  28. Morlock G, Schwack W. Hyphenations in planar chromatography. J Chromatogr A. 2010;1217(43):6600–9. https://doi.org/10.1016/j.chroma.2010.04.058.

    Article  CAS  PubMed  Google Scholar 

  29. Buchinger S, Spira D, Bröder K, Schlüsener M, Ternes T, Reifferscheid G. Direct coupling of thin-layer chromatography with a bioassay for the detection of estrogenic compounds: applications for effect-directed analysis. Anal Chem. 2013;85(15):7248–56. https://doi.org/10.1021/ac4010925.

    Article  CAS  PubMed  Google Scholar 

  30. Weiss SC, Egetenmeyer N, Schulz W. Coupling of in vitro bioassays with planar chromatography in effect-directed analysis. Adv Biochem Eng Biotechnol. 2017;157:187–224. https://doi.org/10.1007/10_2016_16.

    Article  CAS  PubMed  Google Scholar 

  31. Chamas A, Pham HTM, Jähne M, Hettwer K, Gehrmann L, Tuerk J, et al. Separation and identification of hormone-active compounds using a combination of chromatographic separation and yeast-based reporter assay. Sci Total Environ. 2017;605–606:507–13. https://doi.org/10.1016/j.scitotenv.2017.06.077.

    Article  CAS  PubMed  Google Scholar 

  32. Stütz L, Weiss SC, Schulz W, Schwack W, Winzenbacher R. Selective two-dimensional effect-directed analysis with thin-layer chromatography. J Chromatogr A. 2017;1524:273–82. https://doi.org/10.1016/j.chroma.2017.10.009.

    Article  CAS  PubMed  Google Scholar 

  33. Stütz L, Schulz W, Winzenbacher R. Identification of acetylcholinesterase inhibitors in water by combining two-dimensional thin-layer chromatography and high-resolution mass spectrometry. J Chromatogr A. 2020;1624:461239. https://doi.org/10.1016/j.chroma.2020.461239.

    Article  CAS  PubMed  Google Scholar 

  34. Chamas A, Pham HTM, Jähne M, Hettwer K, Uhlig S, Simon K, et al. Simultaneous detection of three sex steroid hormone classes using a novel yeast-based biosensor. Biotechnol Bioeng. 2017;114(7):1539–49. https://doi.org/10.1002/bit.26249.

    Article  CAS  PubMed  Google Scholar 

  35. Schoenborn A, Schmid P, Bräm S, Reifferscheid G, Ohlig M, Buchinger S. Unprecedented sensitivity of the planar yeast estrogen screen by using a spray-on technology. J Chromatogr A. 2017;1530:185–91. https://doi.org/10.1016/j.chroma.2017.11.009.

    Article  CAS  PubMed  Google Scholar 

  36. Klingelhöfer I, Morlock GE. Sharp-bounded zones link to the effect in planar chromatography-bioassay-mass spectrometry. J Chromatogr A. 2014;1360:288–95. https://doi.org/10.1016/j.chroma.2014.07.083.

    Article  CAS  PubMed  Google Scholar 

  37. Grünebaum T, Jardin N, Lübken M, Marc W, Sven L, Rath L, et al. Untersuchung verschiedener Verfahren zur weitergehenden Spurenstoffelimination auf kommunalen Kläranlagen im großtechnischen Maßstab. Korrespondenz Abwasser. 2014;10:876–84.

    Google Scholar 

  38. Bergmann AJ, Simon E, Schifferli A, Schönborn A, Vermeirssen ELM. Estrogenic activity of food contact materials-evaluation of 20 chemicals using a yeast estrogen screen on HPTLC or 96-well plates. Anal Bioanal Chem. 2020;412(19):4527–36. https://doi.org/10.1007/s00216-020-02701-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Van den Belt K, Berckmans P, Vangenechten C, Verheyen R, Witters H. Comparative study on the in vitro/in vivo estrogenic potencies of 17beta-estradiol, estrone, 17alpha-ethynylestradiol and nonylphenol. Aquat Toxicol. 2004;66(2):183–95. https://doi.org/10.1016/j.aquatox.2003.09.004.

    Article  CAS  PubMed  Google Scholar 

  40. Riegraf C, Reifferscheid G, Belkin S, Moscovici L, Shakibai D, Hollert H, et al. Combination of yeast-based in vitro screens with high-performance thin-layer chromatography as a novel tool for the detection of hormonal and dioxin-like compounds. Anal Chim Acta. 2019;1081:218–30. https://doi.org/10.1016/j.aca.2019.07.018.

    Article  CAS  PubMed  Google Scholar 

  41. Klingelhöfer I, Morlock GE. Bioprofiling of surface/wastewater and bioquantitation of discovered endocrine-active compounds by streamlined direct bioautography. Anal Chem. 2015;87(21):11098–104. https://doi.org/10.1021/acs.analchem.5b03233.

    Article  CAS  PubMed  Google Scholar 

  42. Günter A, Balsaa P, Werres F, Schmidt TC. Influence of the drying step within disk-based solid-phase extraction both on the recovery and the limit of quantification of organochlorine pesticides in surface waters including suspended particulate matter. J Chromatogr A. 2016;1450:1–8. https://doi.org/10.1016/j.chroma.2016.03.073.

    Article  CAS  PubMed  Google Scholar 

  43. Cotlet M, Goodwin PM, Waldo GS, Werner JH. A comparison of the fluorescence dynamics of single molecules of a green fluorescent protein: one- versus two-photon excitation. Chemphyschem. 2006;7(1):250–60. https://doi.org/10.1002/cphc.200500247.

    Article  CAS  PubMed  Google Scholar 

  44. Schick D, Schwack W. Planar yeast estrogen screen with resorufin-beta-d-galactopyranoside as substrate. J Chromatogr A. 2017;1497:155–63. https://doi.org/10.1016/j.chroma.2017.03.047.

    Article  CAS  PubMed  Google Scholar 

  45. Nakada N, Shinohara H, Murata A, Kiri K, Managaki S, Sato N, et al. Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant. Water Res. 2007;41(19):4373–82. https://doi.org/10.1016/j.watres.2007.06.038.

    Article  CAS  PubMed  Google Scholar 

  46. Itzel F, Baetz N, Hohrenk LL, Gehrmann L, Antakyali D, Schmidt TC, et al. Evaluation of a biological post-treatment after full-scale ozonation at a municipal wastewater treatment plant. Water Res. 2020;170:115316. https://doi.org/10.1016/j.watres.2019.115316.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support for the graduate program Future Water by the Ministry of Culture and Science of the Federal State of North Rhine-Westphalia (MKW NRW, Düsseldorf, Germany) is gratefully acknowledged. Gratefully acknowledged is also the support of the Ruhrverband (Essen, Germany) especially Prof. Dr. Grünebaum and the team from the WWTP Schwerte. Special thanks also go to new_diagnostics (Berlin, Germany) and especially Martin Jähne for providing the yeast strains and fruitful discussions. Further thanks also go to the reviewers of this work, who really helped to improve the manuscript and conclusions with their comments.

Funding

This study received funding from the graduate program Future Water by the Ministry of Culture and Science of the Federal State of North Rhine-Westphalia (MKW NRW, Düsseldorf, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Tuerk.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable

Code availability

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 1146 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baetz, N., Rothe, L., Wirzberger, V. et al. High-performance thin-layer chromatography in combination with a yeast-based multi-effect bioassay to determine endocrine effects in environmental samples. Anal Bioanal Chem 413, 1321–1335 (2021). https://doi.org/10.1007/s00216-020-03095-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-03095-5

Keywords

Navigation