Skip to main content

Coupling of In Vitro Bioassays with Planar Chromatography in Effect-Directed Analysis

  • Chapter
  • First Online:
In vitro Environmental Toxicology - Concepts, Application and Assessment

Abstract

Modern analytical test methods increasingly detect anthropogenic organic substances and their transformation products in water samples and in the environment. The presence of these compounds might pose a risk to the aquatic environment. To determine a possible (eco)toxicological risk, aquatic samples are tested using various bioassays, including sub-organismic assays such as the luminescent bacteria inhibition test, the acetylcholinesterase inhibition test, and the umu-test. The effect-directed analysis (EDA) combines physicochemical separation methods with biological (in vitro) tests. High-performance thin-layer chromatography (HPTLC) has proved to be particularly well suited for the separation of organic compounds and the subsequent analysis of effects by the application of the biotests directly on the surface of the HPTLC plate. The advantage of using HPTLC in comparison to high-performance liquid chromatography (HPLC) for EDA is that the solvent which is used as a mobile phase during chromatography is completely evaporated after the separation and therefore can no longer influence the applied bioassays.

A prioritization during the complex identification process can be achieved when observed effects are associated with the separated zones in HPTLC. This increases the probability of identifying the substance responsible for an adverse effect from the multitude of organic trace substances in environmental samples. Furthermore, by comparing the pattern of biological effects of a separated sample, it is possible to track and assess changes in biological activity over time, over space, or in the course of a process, even without identifying the substance. HPTLC has already been coupled with various bioassays.

Because HPTLC is a very flexible system, various detection techniques can be used and combined. In addition to the UV/Vis absorption and fluorescence measurements, TLC can also be coupled with a mass spectrometer (MS) for compound identification. In addition, detection of functional groups by means of derivatization reagents can support this identification. It is also possible to combine derivatization and HPLC-MS.

Two case studies are used to illustrate the significance of HPTLC-EDA in investigating water quality:

  • Study on a wastewater treatment plant

  • Possible influence of an artificial turf surface on ground water

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farré M, Pérez S, Kantiani L, Barceló D (2008) Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. TrAC Trends Anal Chem 27(11):991–1007

    Article  CAS  Google Scholar 

  2. Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313(5790):1072–1077. doi:10.1126/science.1127291

    Article  CAS  Google Scholar 

  3. Kümmerer K (2009) The presence of pharmaceuticals in the environment due to human use - present knowledge and future challenges. J Environ Manag 90:2354–2366. doi:10.1016/j.jenvman.2009.01.023

    Article  CAS  Google Scholar 

  4. Pal A, Gin KY-H, Lin AY-C, Reinhard M (2010) Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects. Sci Total Environ 408(24):6062–6069. doi:10.1016/j.scitotenv.2010.09.026

    Article  CAS  Google Scholar 

  5. Escher BI, Fenner K (2011) Recent advances in environmental risk assessment of transformation products. Environ Sci Technol 45(9):3835–3847. doi:10.1021/es1030799

    Article  CAS  Google Scholar 

  6. Farré M, Barceló D (2003) Toxicity testing of wastewater and sewage sludge by biosensors, bioassays and chemical analysis. Trends Anal Chem 22(5):299–310

    Article  CAS  Google Scholar 

  7. Kokkali V, van Delft W (2014) Overview of commercially available bioassays for assessing chemical toxicity in aqueous samples. TrAC Trends Anal Chem 61:133–155. doi:10.1016/j.trac.2014.08.001

    Article  CAS  Google Scholar 

  8. Tuikka AI, Schmitt C, Höss S, Bandow N, von der Ohe PC, de Zwart D, de Deckere E, Streck G, Mothes S, van Hattum B, Kocan A, Brix R, Brack W, Barceló D, Sormunen AJ, Kukkonen JVK (2011) Toxicity assessment of sediments from three European river basins using a sediment contact test battery. Ecotoxicol Environ Saf 74(1):123–131. doi:10.1016/j.ecoenv.2010.08.038

    Article  CAS  Google Scholar 

  9. Bletsou AA, Jeon J, Hollender J, Archontaki E, Thomaidis NS (2015) Targeted and non-targeted liquid chromatography-mass spectrometric workflows for identification of transformation products of emerging pollutants in the aquatic environment. Trends Anal Chem 66:32–44. doi:10.1016/j.trac.2014.11.009

    Article  CAS  Google Scholar 

  10. Leendert V, Van Langenhove H, Demeestere K (2015) Trends in liquid chromatography coupled to high-resolution mass spectrometry for multi-residue analysis of organic micropollutants in aquatic environments. TrAC Trends Anal Chem 67:192–208. doi:10.1016/j.trac.2015.01.010

    Article  CAS  Google Scholar 

  11. Brack W (2003) Effect-directed analysis: a promising tool for the identification of organic toxicants in complex mixtures? Anal Bioanal Chem 377(3):397–407

    Article  CAS  Google Scholar 

  12. Weiss J, Simon E, Stroomberg G, de Boer R, de Boer J, van der Linden S, Leonards P, Lamoree M (2011) Identification strategy for unknown pollutants using high-resolution mass spectrometry: androgen-disrupting compounds identified through effect-directed analysis. Anal Bioanal Chem 400(9):3141–3149. doi:10.1007/s00216-011-4939-x

    Article  CAS  Google Scholar 

  13. Rhee IK, Appels N, Hofte B, Karabatak B, Erkelens C, Stark LM, Flippin LA, Verpoorte R (2004) Isolation of the acetylcholinesterase inhibitor ungeremine from Nerine bowdenii by preparative HPLC coupled on-line to a flow assay system. Biol Pharm Bull 27(11):1804–1809. doi:10.1248/bpb.27.1804

    Article  CAS  Google Scholar 

  14. Fabel S, Niessner R, Weller MG (2005) Effect-directed analysis by high-performance liquid chromatography with gas-segmented enzyme inhibition. J Chromatogr A 1099(1-2):103–110. doi:10.1016/j.chroma.2005.08.081

    Article  CAS  Google Scholar 

  15. Reinen J, Kool J, Vermeulen NE (2008) Reversed-phase liquid chromatography coupled on-line to estrogen receptor bioaffinity detection based on fluorescence polarization. Anal Bioanal Chem 390(8):1987–1998. doi:10.1007/s00216-008-1833-2

    Article  CAS  Google Scholar 

  16. Morlock GE, Prabha S (2007) Analysis and stability of sucralose in a milk-based confection by a simple planar chromatographic method. J Agric Food Chem 55(18):7217–7223. doi:10.1021/jf071719u

    Article  CAS  Google Scholar 

  17. Morlock G, Schwack W (2008) Planar chromatography - back to the future? LC-GC Europe 21:366–371

    Google Scholar 

  18. Aranda M, Morlock G (2006) Simultaneous determination of riboflavin, pyridoxine, nicotinamide, caffeine and taurine in energy drinks by planar chromatography-multiple detection with confirmation by electrospray ionization mass spectrometry. J Chromatogr A 1131(1-2):253–260

    Article  CAS  Google Scholar 

  19. Weber WH, Seitz W, Schulz W, Aichinger A (2007) Evidence of the metabolites desphenyl-chloridazon and methyl-desphenyl chloridazon in surface, ground and drinking water. Camag Bibliogr Serv 98:12–15

    Google Scholar 

  20. Hirschfeld T (1980) The hy-phen-ated methods. Anal Chem 52(2):297A–312A. doi:10.1021/ac50052a870

    Article  CAS  Google Scholar 

  21. Goodall RR, Levi AA (1946) A microchromatographic method for the detection and approximate determination of the different penicillins in a mixture. Nature 158:675–676. doi:10.1038/158675a0

    Article  CAS  Google Scholar 

  22. Pailler JY, Krein A, Pfister L, Hoffmann L, Guignard C (2009) Solid phase extraction coupled to liquid chromatography-tandem mass spectrometry analysis of sulfonamides, tetracyclines, analgesics and hormones in surface water and wastewater in Luxembourg. Sci Total Environ 407(16):4736–4743. doi:10.1016/j.scitotenv.2009.04.042

    Article  CAS  Google Scholar 

  23. Faber P, Bierl R (2012) Influence of different flow conditions on the occurrence and behavior of potentially hazardous organic xenobiotics in the influent and effluent of a municipal sewage treatment plant in Germany: an effect-directed approach. Environ Sci Eur 24(1):1–13. doi:10.1186/2190-4715-24-2

    Article  CAS  Google Scholar 

  24. Oellig C, Schwack W (2011) Planar solid phase extraction--a new clean-up concept in multi-residue analysis of pesticides by liquid chromatography-mass spectrometry. J Chromatogr A 1218(37):6540–6547. doi:10.1016/j.chroma.2011.06.108

    Article  CAS  Google Scholar 

  25. Ramos L, Ramos JJ, Brinkman UAT (2005) Miniaturization in sample treatment for environmental analysis. Anal Bioanal Chem 381(1):119–140

    Article  CAS  Google Scholar 

  26. Poole SK, Poole CF (2011) High performance stationary phases for planar chromatography. J Chromatogr A 1218(19):2648–2660. doi:10.1016/j.chroma.2010.10.072

    Article  CAS  Google Scholar 

  27. Poole CF (2015) High-performance precoated stationary phases. In: Poole CF (ed) Instrumental thin-layer chromatography. Elsevier, Amsterdam, pp 31–51. doi:10.1016/B978-0-12-417223-4.00002-9

    Chapter  Google Scholar 

  28. Poole CF, Poole SK (1995) Multidimensionality in planar chromatography. J Chromatogr A 703(1–2):573–612. doi:10.1016/0021-9673(94)01286-N

    Article  CAS  Google Scholar 

  29. Dzido TH (2000) Chromatography: thin-layer (planar)/modes of development: conventional. In: Wilson ID, Adlard ER, Cooke M, Poole CF (eds) Encyclopedia of separation science. Academic, San Diego, pp 866–876

    Chapter  Google Scholar 

  30. Poole CF (1999) Planar chromatography at the turn of the century. J Chromatogr A 856(1-2):399–427

    Article  CAS  Google Scholar 

  31. Morlock G, Schwack W (2007) The contribution of planar chromatography to food analysis. J Planar Chromatogr - Mod TLC 20(6):399–406

    Article  CAS  Google Scholar 

  32. Móricz Á, Kalász H (2010) Centrifugal layer chromatography — rotation planar chromatography. J Planar Chromatogr - Mod TLC 23(6):415–419

    Article  CAS  Google Scholar 

  33. Nyiredy S (2003) Progress in forced-flow planar chromatography. J Chromatogr A 1000(1–2):985–999. doi:10.1016/s0021-9673(03)00308-x

    Article  CAS  Google Scholar 

  34. Tyihák E, Mincsovics E, Móricz ÁM (2012) Overpressured layer chromatography: from the pressurized ultramicro chamber to BioArena system. J Chromatogr A 1232:3–18. doi:10.1016/j.chroma.2011.11.049

    Article  CAS  Google Scholar 

  35. Perry JA, Haag KW, Glunz LJ (1973) Programmed multiple development in thin layer chromatography. J Chromatogr Sci 11(9):447–453. doi:10.1093/chromsci/11.9.447

    Article  CAS  Google Scholar 

  36. Burger K (1984) DC-PMD, Dünnschicht-Chromatographie mit Gradienten-Elution im Vergleich zur Säulenflüssigkeits-Chromatographie. Fresenius J Anal Chem 318(3):228–233. doi:10.1007/bf00528586

    Article  CAS  Google Scholar 

  37. Burger K (1995) Thin layer chromatography with automated multiple development (AMD-TLC). Chem Plant Protect 12:181–195

    Article  CAS  Google Scholar 

  38. Fuchs B, Süß R, Teuber K, Eibisch M, Schiller J (2011) Lipid analysis by thin-layer chromatography--a review of the current state. J Chromatogr A 1218(19):2754–2774. doi:10.1016/j.chroma.2010.11.066

    Article  CAS  Google Scholar 

  39. Cebolla VL, Jarne C, Domingo P, Domínguez A, Delgado-Camón A, Garriga R, Galbán J, Membrado L, Gálvez EM, Cossío FP (2011) Fluorescence detection by intensity changes for high-performance thin-layer chromatography separation of lipids using automated multiple development. J Chromatogr A 1218(19):2668–2675. doi:10.1016/j.chroma.2010.11.033

    Article  CAS  Google Scholar 

  40. Sherma J (2000) Thin-layer chromatography in food and agricultural analysis. J Chromatogr A 880(1–2):129–147. doi:10.1016/s0021-9673(99)01132-2

    Article  CAS  Google Scholar 

  41. Galand N, Pothier J, Viel C (2002) Plant drug analysis by planar chromatography. J Chromatogr Sci 40(10):585–597. doi:10.1093/chromsci/40.10.585

    Article  CAS  Google Scholar 

  42. De La Vigne U, Jänchen DE, Weber WH (1991) Application of high-performance thin-layer chromatography and automated multiple development for the identification and determination of pesticides in water. J Chromatogr A 553:489–496

    Article  Google Scholar 

  43. Burger K, Jork H, Köhler J (1996) Application of AMD to the determination of crop protection agents in drinking water. Part IV: Fundamentals of a confirmatory test. Acta Hydrochim Hydrobiol 24(1):6–15

    Article  CAS  Google Scholar 

  44. DIN V 38407-11:1995-01 (Prestandard) (1995) German standard methods for the examination of water, waste water and sludge - jointly determinable substances (group F) - Part 11: Determination of selected organic plant protecting agents by Automated Multiple Development (AMD)-technique (F 11) (in German)

    Google Scholar 

  45. Goodall RR, Levi AA (1947) A micro-chromatographic method for the detection and approximate determination of the different penicillins in a mixture. Analyst 72(856):277–290. doi:10.1039/an9477200277

    Article  CAS  Google Scholar 

  46. Meyers E, Smith DA (1964) Bioautography of antibiotic spread-layer chromatograms. J Chromatogr A 14:129–132. doi:10.1016/S0021-9673(00)86603-0

    Article  CAS  Google Scholar 

  47. Rahalison L, Hamburger M, Hostettmann K, Monod M, Frenk E (1991) A bioautographic agar overlay method for detection of antifungal compounds from higher plants. Phytochem Anal 2:199–203

    Article  CAS  Google Scholar 

  48. Baumann U, Indermaur H, Pletscher E (2000) Untersuchungskonzept zur Charakterisierung toxischer Stoffe in belastetem Wasser. Umweltwiss Schadst Forsch 12(2):63–67. doi:10.1007/bf03038159

    Article  CAS  Google Scholar 

  49. Eberz G, Rast H, Burger K, Kreiss W, Weisemann C (1996) Bioactivity screening by chromatography-bioluminescence coupling. Chromatographia 43(1):5–9

    Article  CAS  Google Scholar 

  50. Choma I, Choma A, Staszczuk K (2002) Direct bioautography-thin-layer chromatography of flumequine and doxycycline in milk. J Planar Chromatogr - Mod TLC 15(3):187–191

    Article  CAS  Google Scholar 

  51. Akkad R, Schwack W (2010) Multi-enzyme inhibition assay for the detection of insecticidal organophosphates and carbamates by high-performance thin-layer chromatography applied to determine enzyme inhibition factors and residues in juice and water samples. J Chromatogr B 878(17-18):1337–1345

    Article  CAS  Google Scholar 

  52. Schweppe CH, Hoffmann P, Nofer J-R, Pohlentz G, Mormann M, Karch H, Friedrich AW, Müthing J (2010) Neutral glycosphingolipids in human blood: a precise mass spectrometry analysis with special reference to lipoprotein-associated Shiga toxin receptors. J Lipid Res 51(8):2282–2294. doi:10.1194/jlr.M006759

    Article  CAS  Google Scholar 

  53. Cieśla Ł, Kryszeń J, Stochmal A, Oleszek W, Waksmundzka-Hajnos M (2012) Approach to develop a standardized TLC-DPPH test for assessing free radical scavenging properties of selected phenolic compounds. J Pharm Biomed Anal 70:126–135. doi:10.1016/j.jpba.2012.06.007

    Article  CAS  Google Scholar 

  54. Rios JL, Recio MC, Villar A (1988) Screening methods for natural products with antimicrobial activity: a review of the literature. J Ethnopharmacol 23(2–3):127–149. doi:10.1016/0378-8741(88)90001-3

    Article  CAS  Google Scholar 

  55. Choma I, Jesionek W (2015) Effects-directed biological detection: bioautography. In: Poole CF (ed) Instrumental thin-layer chromatography. Elsevier, Amsterdam, pp 279–312. doi:10.1016/B978-0-12-417223-4.00011-X

    Chapter  Google Scholar 

  56. Wagman GH, Bailey JV (1969) Use of silicic acid—glass fiber sheets for bioautography of antimicrobial substances. J Chromatogr A 41:263–264. doi:10.1016/0021-9673(64)80132-1

    Article  CAS  Google Scholar 

  57. Betina V (1973) Bioautography in paper and thin-layer chromatography and its scope in the antibiotic field. J Chromatogr A 78:41–51. doi:10.1016/S0021-9673(01)99035-1

    Article  CAS  Google Scholar 

  58. Nagy S, Kocsis B, Kőszegi T, Botz L (2002) Optimization of conditions for culture of the test bacteria used for direct bioautographic detection. 1. The Gram-positive test bacterium Bacillus subtilis. J Planar Chromatogr - Mod TLC 15(2):132–137

    Article  CAS  Google Scholar 

  59. Nagy S, Kőszegi T, Botz L, Kocsis B (2003) Optimization of conditions for culture of test bacteria used for direct bioautographic TLC detection. 2. Gram-negative test bacterium: Escherichia coli. J Planar Chromatogr - Mod TLC 16(2):121–126

    Article  CAS  Google Scholar 

  60. Nagy S, Kocsis B, Kőszegi T, Botz L (2007) Optimization of growth conditions for test fungus cultures used in direct bioautographic TLC detection. 3. Test fungus: Candida albicans. J Planar Chromatogr - Mod TLC 20(5):385–389

    Article  CAS  Google Scholar 

  61. Grzelak EM, Majer-Dziedzic B, Choma IM (2011) Development of a novel direct bioautography-thin-layer chromatography test: optimization of growth conditions for Gram-negative bacteria, Escherichia coli. J AOAC Int 94(5):1567–1572. doi:10.5740/jaoac.10-385

    Article  CAS  Google Scholar 

  62. Grzelak EM, Majer-Dziedzic B, Choma IM, Pilorz KM (2013) Development of a novel direct bioautography-thin-layer chromatography test: optimization of growth conditions for Gram-positive bacteria, Bacillus subtilis. J AOAC Int 96(2):386–391. doi:10.5740/jaoacint.11-466

    Article  CAS  Google Scholar 

  63. Akkad R, Schwack W (2011) Effect of bromine oxidation on high-performance thin-layer chromatography multi-enzyme inhibition assay detection of organophosphates and carbamate insecticides. J Chromatogr A 1218(19):2775–2784. doi:10.1016/j.chroma.2011.02.029

    Article  CAS  Google Scholar 

  64. Magnani JL, Smith DF, Ginsburg V (1980) Detection of gangliosides that bind cholera toxin: direct binding of 125I-labeled toxin to thin-layer chromatograms. Anal Biochem 109(2):399–402. doi:10.1016/0003-2697(80)90667-3

    Article  CAS  Google Scholar 

  65. Meisen I, Mormann M, Müthing J (2011) Thin-layer chromatography, overlay technique and mass spectrometry: a versatile triad advancing glycosphingolipidomics. Biochim Biophys Acta 1811(11):875–896. doi:10.1016/j.bbalip.2011.04.006

    Article  CAS  Google Scholar 

  66. Tanaka H, Putalun W, Tsuzaki C, Shoyama Y (1997) A simple determination of steroidal alkaloid glycosides by thin-layer chromatography immunostaining using monoclonal antibody against solamargine. FEBS Lett 404(2–3):279–282. doi:10.1016/S0014-5793(97)00106-3

    Article  CAS  Google Scholar 

  67. Muthing J, Cacic M (1997) Glycosphingolipid expression in human skeletal and heart muscle assessed by immunostaining thin-layer chromatography. Glycoconj J 14(1):19–28. doi:10.1023/a:1018552729572

    Article  CAS  Google Scholar 

  68. Kushi Y, Ogura K, Rokukawa C, Handa S (1990) Blood group A-active glycosphingolipids analysis by the combination of TLC-immunostaining assay and TLC/SIMS mass spectrometry. J Biochem 107(5):685–688

    Article  CAS  Google Scholar 

  69. Portoukalian J, Bouchon B (1986) Hydrolysis of all gangliosides, including GM1 and GM2, on thin-layer plates by Vibrio cholerae neuraminidase. J Chromatogr B Biomed Sci Appl 380:386–392. doi:10.1016/S0378-4347(00)83668-3

    Article  CAS  Google Scholar 

  70. Yu RK, Ariga T (2000) Ganglioside analysis by high-performance thin-layer chromatography. In: Alfred HM, Yusuf AH (eds) Methods in enzymology, vol 312. Academic, London, pp 115–134. doi:10.1016/S0076-6879(00)12903-9

    Google Scholar 

  71. Sorice M, Griggi T, Circella A, Garofalo T, d’Agostino F, Pittoni V, Pontieri GM, Lenti L, Valesini G (1994) Detection of antiphospholipid antibodies by immunostaining on thin layer chromatography plates. J Immunol Methods 173(1):49–54. doi:10.1016/0022-1759(94)90282-8

    Article  CAS  Google Scholar 

  72. Sorice M, Circella A, Misasi R, Pittoni V, Garofalo T, Cirelli A, Pavan A, Pontieri GM, Valesini G (2000) Cardiolipin on the surface of apoptotic cells as a possible trigger for antiphospholipid antibodies. Clin Exp Immunol 122(2):277–284. doi:10.1046/j.1365-2249.2000.01353.x

    Article  CAS  Google Scholar 

  73. Alessandri C, Sorice M, Bombardieri M, Conigliaro P, Longo A, Garofalo T, Manganelli V, Conti F, Esposti M, Valesini G (2006) Antiphospholipid reactivity against cardiolipin metabolites occurring during endothelial cell apoptosis. Arthritis Res Ther 8(6):R180

    Article  CAS  Google Scholar 

  74. Conti F, Alessandri C, Sorice M, Capozzi A, Longo A, Garofalo T, Misasi R, Bompane D, Hughes GRV, Khamashta MA, Valesini G (2012) Thin-layer chromatography immunostaining in detecting anti-phospholipid antibodies in seronegative anti-phospholipid syndrome. Arthritis Res Ther 167(3):429–437. doi:10.1111/j.1365-2249.2011.04532.x

    CAS  Google Scholar 

  75. Conti F, Alessandri C, Spinelli F, Capozzi A, Martinelli F, Recalchi S, Misasi R, Valesini G, Sorice M (2014) TLC immunostaining for detection of “antiphospholipid” antibodies. In: Eggleton P, Ward FJ (eds) Systemic lupus erythematosus, vol 1134. Methods in molecular biology. Springer, New York, pp 95–101. doi:10.1007/978-1-4939-0326-9_8

    Google Scholar 

  76. Weins C, Jork H (1996) Toxicological evaluation of harmful substances by in situ enzymatic and biological detection in high-performance thin-layer chromatography. J Chromatogr A 750(1-2):403–407. doi:10.1016/0021-9673(96)00601-2

    Article  CAS  Google Scholar 

  77. DIN EN ISO 11348-3:2009-05 (2009) Water quality - determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (luminescent bacteria test) - Part 3: Method using freeze-dried bacteria (German version of ISO 11348-3:2007)

    Google Scholar 

  78. Schulz W, Seitz W, Weber WH (2008) HPTLC/AMD with Vibrio fischeri as an example for bioactivity-based detection – a new dimension in analytics. Paper presented at the HPTLC - International Symposium for Thin Layer Chromatography, Helsinki

    Google Scholar 

  79. Schulz W, Weiss SC, Weber WH (2015) The RIV concept: a novel procedure for the evaluation in effect-directed analysis with TLC - using the TLC-bioluminescence inhibition assay as an example- (Submitted)

    Google Scholar 

  80. Klöppel A, Grasse W, Brümmer F, Morlock G (2008) HPTLC coupled with bioluminescence and mass spectrometry for bioactivity-based analysis of secondary metabolites in marine sponges. J Planar Chromatogr - Mod TLC 21(6):431–436

    Article  CAS  Google Scholar 

  81. Verbitski SM, Gourdin GT, Ikenouye LM, McChesnex JD, Hildreth J (2008) Detection of Actaea racemosa adulteration by thin-layer chromatography and combined thin-layer chromatography-bioluminescence. J AOAC Int 91(2):268–275

    CAS  Google Scholar 

  82. Okusa P, Stévigny C, Devleeschouwer M, Duez P (2010) Optimization of the culture medium used for direct TLC-bioautography. Application to the detection of antimicrobial compounds from Cordia gilletii De Wild (Boraginaceae). J Planar Chromatogr - Mod TLC 23(4):245–249

    Article  CAS  Google Scholar 

  83. Baumgartner V, Hohl C, Hauri U (2009) Bioactivity-based analysis of sunscreens using the luminescent bacteria Vibrio fischeri. J Planar Chromatogr - Mod TLC 22(1):19–23

    Article  CAS  Google Scholar 

  84. Baumgartner V, Hohl C, Schwack W (2013) Screening for antimicrobials in mouthwashes using HPTLC-bioluminescence detection. Chromatographia 76(19-20):1315–1325. doi:10.1007/s10337-012-2375-5

    Article  CAS  Google Scholar 

  85. Schulz W, Seitz W, Weiss SC, Weber WH, Böhm M, Flottmann D (2008) Use of Vibrio fischeri for screening for bioactivity in water analysis. J Planar Chromatogr - Mod TLC 21(6):427–430

    Article  CAS  Google Scholar 

  86. Weber WH, Seitz W, Aichinger A, Albert R (2005) Luminographic detection of toxicity with Vibrio fischeri. Camag Bibliogr Serv 94:2–4

    Google Scholar 

  87. Reemtsma T, Putschew A, Jekel M (1999) Industrial wastewater analysis: a toxicity-directed approach. Waste Manag 19(2):181–188

    Article  CAS  Google Scholar 

  88. Müller A, Weiss SC, Schulz W, Seitz W, Albert R, Ruck WKL, Weber WH (2010) Combination of different liquid chromatography/mass spectrometry technologies for the identification of transformation products of rhodamine B in groundwater. Rapid Commun Mass Spectrom 24(5):659–666

    Article  CAS  Google Scholar 

  89. Prasse C, Wagner M, Schulz R, Ternes TA (2012) Oxidation of the antiviral drug acyclovir and its biodegradation product carboxy-acyclovir with ozone: kinetics and identification of oxidation products. Environ Sci Technol 46(4):2169–2178. doi:10.1021/es203712z

    Article  CAS  Google Scholar 

  90. Luft A, Wagner M, Ternes TA (2014) Transformation of biocides irgarol and terbutryn in the biological wastewater treatment. Environ Sci Technol 48(1):244–254. doi:10.1021/es403531d

    Article  CAS  Google Scholar 

  91. Choma IM, Grzelak EM (2011) Bioautography detection in thin-layer chromatography. J Chromatogr A 1218(19):2684–2691. doi:10.1016/j.chroma.2010.12.069

    Article  CAS  Google Scholar 

  92. Choma I (2006) Screening of enrofloxacin and ciprofloxacin residues in milk by HPLC and by TLC with direct bioautography. J Planar Chromatogr - Mod TLC 19(108):104–108. doi:10.1556/JPC.19.2006.2.3

    Article  CAS  Google Scholar 

  93. Choma IM, Kowalski C, Lodkowski R, Burmańczuk A, Komaniecka I (2008) TLC-DB as an alternative to the HPLC method in the determination of cefacetril residues in cow’s milk. J Liq Chromatogr Relat Technol 31(13):1903–1912. doi:10.1080/10826070802194815

    Article  CAS  Google Scholar 

  94. Klingelhöfer I, Morlock GE (2014) Sharp-bounded zones link to the effect in planar chromatography-bioassay-mass spectrometry. J Chromatogr A 1360:288–295. doi:10.1016/j.chroma.2014.07.083

    Article  CAS  Google Scholar 

  95. Weins C (2008) Overview of bioactivity-based analysis by HPTLC. Bridging the gap between cause and effect — HPTLC detection of bioactive compounds in the environment and in food. J Planar Chromatogr - Mod TLC 21(6):405–410

    Article  CAS  Google Scholar 

  96. Jesionek W, Grzelak E, Majer-Dziedzic B, Choma I (2013) Thin-layer chromatography — direct bioautography for the screening of antimicrobial properties of plant extracts. J Planar Chromatogr - Mod TLC 26(2):109–113. doi:10.1556/jpc.26.2013.2.1

    Article  CAS  Google Scholar 

  97. Homans AL, Fuchs A (1970) Direct bioautography on thin-layer chromatograms as a method for detecting fungitoxic substances. J Chromatogr A 51:327–329. doi:10.1016/S0021-9673(01)96877-3

    Article  CAS  Google Scholar 

  98. Bailey AM, Coffey MD (1984) A sensitive bioassay for quantification of metalaxyl in soils. Phytopathology 74(6):667–669. doi:10.1094/Phyto-74-667

    Article  CAS  Google Scholar 

  99. Spira D, Reifferscheid G, Buchinger S (2013) Combination of high-performance thin-layer chromatography with a specific bioassay - a tool for effect-directed analysis. J Planar Chromatogr - Mod TLC 26(5):395–401. doi:10.1556/jpc.26.2013.5.2

    Article  CAS  Google Scholar 

  100. McDonnell DP, Nawaz Z, Densmore C, Weigel NL, Pham TA, Clark JH, O’Malley BW (1991) High level expression of biologically active estrogen receptor in Saccharomyces cerevisiae. J Steroid Biochem Mol Biol 39(3):291–297. doi:10.1016/0960-0760(91)90038-7

    Article  CAS  Google Scholar 

  101. Routledge EJ, Sumpter JP (1996) Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environ Toxicol Chem 15(3):241–248

    Article  CAS  Google Scholar 

  102. Müller MB, Dausend C, Weins C, Frimmel FH (2004) A new bioautographic screening method for the detection of estrogenic compounds. Chromatographia 60(3):207–211

    Google Scholar 

  103. Schönborn A, Grimmer A (2013) Coupling sample preparation with effect-directed analysis of estrogenic activity - proposal for a new rapid screening concept for water samples. J Planar Chromatogr - Mod TLC 26(5):402–408. doi:10.1556/jpc.26.2013.5.3

    Article  CAS  Google Scholar 

  104. Buchinger S, Spira D, Bröder K, Schlüsener M, Ternes T, Reifferscheid G (2013) Direct coupling of thin-layer chromatography with a bioassay for the detection of estrogenic compounds: applications for effect-directed analysis. Anal Chem 85(15):7248–7256. doi:10.1021/ac4010925

    Article  CAS  Google Scholar 

  105. Ames BN, Durston WE, Yamasaki E, Lee FD (1973) Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci 70(8):2281–2285

    Article  CAS  Google Scholar 

  106. Oda Y, Nakamura S-I, Oki I, Kato T, Shinagawa H (1985) Evaluation of the new system (umu-test) for the detection of environmental mutagens and carcinogens. Mutat Res/Environ Mutagen Relat Subj 147(5):219–229. doi:10.1016/0165-1161(85)90062-7

    CAS  Google Scholar 

  107. Bjørseth A, Eidsa G, Gether J, Landmark L, Møller M (1982) Detection of mutagens in complex samples by the Salmonella assay applied directly on thin-layer chromatography plates. Science 215(4528):87–89. doi:10.1126/science.7031897

    Article  Google Scholar 

  108. Houk VS, Claxton LD (1986) Screening complex hazardous wastes for mutagenic activity using a modified version of the TLC/Salmonella assay. Mut Res/Genet Toxicol 169(3):81–92. doi:10.1016/0165-1218(86)90087-x

    Article  CAS  Google Scholar 

  109. Baumann U, Brunner C, Pletscher E, Tobler N (2003) Biologische Detektionsverfahren in der Dünnschichtchromatographie. Umweltwiss Schadst Forsch 15(3):163–167. doi:10.1065/uwsf2001.12.080

    Article  CAS  Google Scholar 

  110. DIN 38415-3:1996-12 (1996) German standard methods for the examination of water, waste water and sludge - sub-animal testing (group T) - Part 3: Determination of the genotype potential of water and waste water components with the umu-test (T 3) (in German)

    Google Scholar 

  111. Egetenmeyer N, Weiss SC (2015) Investigations for the detection of genotoxic substances on the TLC plate (Submitted)

    Google Scholar 

  112. Kováč J, Henselová M (1977) Detection of triazine herbicides in soil by a Hill-reaction inhibition technique after thin-layer chromatography. J Chromatogr A 133(2):420–422. doi:10.1016/S0021-9673(00)83509-8

    Article  Google Scholar 

  113. Lawrence JF (1980) Simple, sensitive and selective thin layer chromatographic technique for detecting some photosynthesis inhibiting herbicides. J Assoc Off Anal Chem 63(4):758–761

    CAS  Google Scholar 

  114. Broszat M, Ernst H, Spangenberg B (2011) Quantification of triazine herbicides using chloroplasts in conjunction with thin-layer chromatography. Environ Biotechnol 7(2):47–52

    Google Scholar 

  115. McKinley WP, Read SI (1962) Esterase inhibition technique for the detection of organophosphorus pesticides. J Assoc Off Agric Chem 45:467–474

    CAS  Google Scholar 

  116. McKinley WP, Johal PS (1963) Esterase inhibition technique for detection of organophosphorus pesticides - II. Simplified version for routine checking. J Assoc Off Agric Chem 46:840–842

    CAS  Google Scholar 

  117. Ortloff R, Franz P (1965) Zwei neue Methoden der biochemischen Lokalisierung von phosphorhaltigen Insektiziden auf Dünnschicht-chromatogrammen. Zeitschrift für Chemie 5(10):388–389. doi:10.1002/zfch.19650051020

    Article  CAS  Google Scholar 

  118. Menn JJ, McBain JB, Dennis MJ (1964) Detection of naturally occurring cholinesterase inhibitors in several crops by paper chromatography. Nature 202(4933):697–698

    Article  CAS  Google Scholar 

  119. Bunyan PJ (1964) The detection of organo-phosphorus pesticides on thin-layer chromatograms. Analyst 89(1062):615–618. doi:10.1039/an9648900615

    Article  CAS  Google Scholar 

  120. El-Refai A, Hopkins TL (1965) Insecticide metabolism, thin-layer chromatography and cholinesterase detection of several phosphorothiono insecticides and their oxygen analogs. J Agric Food Chem 13(5):477–481. doi:10.1021/jf60141a026

    Article  Google Scholar 

  121. Menn JJ, McBain JB (1966) Detection of cholinesterase-inhibiting insecticide chemicals and pharmaceutical alkaloids on thin-layer chromatograms. Nature 209(5030):1351–1352

    Article  CAS  Google Scholar 

  122. Ackermann H (1968) Dünnschichtchromatographisch-enzymatischer’Nachweis phosphororganischer Insektizide: Aktivierung schwacher Esterasehemmer. J Chromatogr A 36:309–317. doi:10.1016/s0021-9673(01)92947-4

    Article  CAS  Google Scholar 

  123. Geike F (1970) Dünnschichtchromatographisch--enzymatischer Nachweis von Carbamaten: I. Nachweis insektizider Carbamate mit Rinderleber-Esterase. J Chromatogr A 53(2):269–277. doi:10.1016/s0021-9673(01)98467-5

    Article  CAS  Google Scholar 

  124. Mendoza CE, Shields JB (1970) Sensitivity of pig liver esterase in detecting twelve carbamate pesticides on thin-layer chromatograms. J Chromatogr A 50:92–102. doi:10.1016/s0021-9673(00)97920-2

    Article  CAS  Google Scholar 

  125. Weins C (2006) Möglichkeiten und Grenzen der wirkungsbezogenen Analytik mit der Hochleistungs - Dünnschichtchromatographie. Dissertation, Universität Basel, Basel

    Google Scholar 

  126. Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7(2):88–95. doi:10.1016/0006-2952(61)90145-9

    Article  CAS  Google Scholar 

  127. Rhee IK, van Rijn RM, Verpoorte R (2003) Qualitative determination of false-positive effects in the acetylcholinesterase assay using thin layer chromatography. Phytochem Anal 14(3):127–131. doi:10.1002/pca.675

    Article  CAS  Google Scholar 

  128. Guilbault GG, Kramer DN (1965) Resorufin butyrate and indoxyl acetate as fluorogenic substrates for cholinesterase. Anal Chem 37(1):120–123. doi:10.1021/ac60220a031

    Article  CAS  Google Scholar 

  129. Mendoza CE, Wales PJ, McLeod HA, McKinley WP (1968) Enzymatic detection of ten organophosphorus pesticides and carbaryl on thin-layer chromatograms: an evaluation of indoxyl, substituted indoxyl and 1-naphthyl acetates as substrates of esterases. Analyst 93:34–38

    Article  CAS  Google Scholar 

  130. Hamada M, Wintersteiger R (2003) Fluorescence screening of organophosphorus pesticides in water by an enzyme inhibition procedure on TLC plates. J Planar Chromatogr - Mod TLC 16(1):4–10

    Article  CAS  Google Scholar 

  131. Zoun PEF, Spierenburg TJ (1989) Determination of cholinesterase-inhibiting pesticides and some of their metabolites in cases of animal poisoning using thin-layer chromatography. J Chromatogr A 462:448–453. doi:10.1016/s0021-9673(00)91376-1

    Article  CAS  Google Scholar 

  132. Štefanac Z, Štengl B, Vasilić Ž (1976) Quantitative determination of organophosphorus pesticides by thin-layer densitometry. J Chromatogr A 124(1):127–133. doi:10.1016/S0021-9673(00)87852-8

    Article  Google Scholar 

  133. Winterlin W, Walker G, Frank H (1968) Detection of cholinesterase-inhibiting pesticides following separation on thin-layer chromatograms. J Agric Food Chem 16(5):808–812. doi:10.1021/jf60159a028

    Article  CAS  Google Scholar 

  134. Akkad R, Schwack W (2008) Multi-enzyme inhibition assay for detection of insecticidal organophosphates and carbamates by high-performance thin-layer chromatography. 1. Basics of method development. J Planar Chromatogr - Mod TLC 21(6):411–415

    Article  CAS  Google Scholar 

  135. Jork H, Funk W, Fischer W, Wimmer H (1990) Volume 1a: Physical and chemical detection methods: fundamentals, reagents I. Thin-layer chromatography - reagents and detection methods. VCH, Weinheim

    Google Scholar 

  136. Bratton AC, Marshall EK (1939) A new coupling component for sulfanilamide determination. J Biol Chem 128(2):537–550

    CAS  Google Scholar 

  137. Kinast A (2006) Determination of Amitrol in water by AMD. Camag Bibliogr Serv 96:2–5

    Google Scholar 

  138. Rahn C, Schlenk H (1973) Detection of aldehydes with 4-amino-5-hydrazino-1,2,4-triazole-3-thiol as spray reagent. Lipids 8(11):612–616

    Article  CAS  Google Scholar 

  139. Frey H-P, Zieloff K (1992) Qualitative und quantitative Dünnschichtchromatographie: Grundlagen und Praxis. VCH, Weinheim

    Google Scholar 

  140. Jork H, Funk W, Fischer W, Wimmer H (1994) Volume 1b: Physical and chemical detection methods: activation reactions, reagent sequences, reagents II. Thin-layer chromatography - reagents and detection methods. VCH, Weinheim

    Google Scholar 

  141. Merck AG (2007) Dyeing reagents for thin layer and paper chromatography. http://www.clubdeccm.com/PDF/Dyeing_Reagents_TLC.pdf. Accessed 30.06.2009

  142. Spangenberg B, Poole CF, Weins C (2011) Quantitative thin-layer chromatography: a practical survey, 1st edn. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  143. Müller A, Weiss SC, Beißwenger J, Leukhardt HG, Schulz W, Seitz W, Ruck WKL, Weber WH (2012) Identification of ozonation by-products of 4- and 5-methyl-1H-benzotriazole during the treatment of surface water to drinking water. Water Res 46(3):679–690. doi:10.1016/j.watres.2011.11.033

    Article  CAS  Google Scholar 

  144. Morlock G, Schwack W (2010) Coupling of planar chromatography to mass spectrometry. TrAC Trends Anal Chem 29(10):1157–1171. doi:10.1016/j.trac.2010.07.010

    Article  CAS  Google Scholar 

  145. Wilson ID (1999) The state of the art in thin-layer chromatography-mass spectrometry: a critical appraisal. J Chromatogr A 856(1-2):429–442

    Article  CAS  Google Scholar 

  146. Fuchs B, Schiller J, Süß R, Zscharnack M, Bader A, Müller P, Schürenberg M, Becker M, Suckau D (2008) Analysis of stem cell lipids by offline HPTLC-MALDI-TOF MS. Anal Bioanal Chem 392(5):849–860

    Article  CAS  Google Scholar 

  147. Salo P (2007) Thin-layer chromatography with ultraviolet and mass spectrometric detection: from preparative-layer to miniaturized ultra-thin-layer technique. Dissertation, University of Helsinki, Helsinki

    Google Scholar 

  148. Cody RB, Laramée JA, Durst HD (2005) Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem 77(8):2297–2302. doi:10.1021/ac050162j

    Article  CAS  Google Scholar 

  149. Morlock G, Ueda Y (2007) New coupling of planar chromatography with direct analysis in real time mass spectrometry. J Chromatogr A 1143(1-2):243–251

    Article  CAS  Google Scholar 

  150. Kim H, Jee E, Ahn K, Choi H, Jang Y (2010) Identification of marker compounds in herbal drugs on TLC with DART-MS. Arch Pharm Res 33(9):1355–1359. doi:10.1007/s12272-010-0909-7

    Article  CAS  Google Scholar 

  151. Häbe TT, Morlock GE (2015) Quantitative surface scanning by Direct Analysis in Real Time mass spectrometry. Rapid Commun Mass Spectrom 29(6):474–484. doi:10.1002/rcm.7127

    Article  CAS  Google Scholar 

  152. Luftmann H (2004) A simple device for the extraction of TLC spots: direct coupling with an electrospray mass spectrometer. Anal Bioanal Chem 378(4):964–968

    Article  CAS  Google Scholar 

  153. Stan H-J, Schwarzer F (1998) On-line coupling of liquid chromatography with thin-layer chromatography. J Chromatogr A 819(1-2):35–44

    Article  CAS  Google Scholar 

  154. Gössi A, Gaugler S, Scherer U, Schlotterbeck G, Wyss S, Büttler A, Hettich T, Baron A (2013) Rapid structure confirmation and quantitation by HPTLC-NMR. Camag Bibliogr Ser 110:2–4

    Google Scholar 

  155. Weber WH, Seitz W, Schulz W, Wagener H-A (2007) Nachweis der Metaboliten Desphenyl-chloridazon und Methyl-desphenyl-chloridazon in Oberflächen-, Grund- und Trinkwasser. Vom Wasser 105(1):7–14

    CAS  Google Scholar 

  156. Jautz U, Morlock G (2006) Efficacy of planar chromatography coupled to (tandem) mass spectrometry for employment in trace analysis. J Chromatogr A 1128(1-2):244–250

    Article  CAS  Google Scholar 

  157. Aranda M, Morlock G (2007) New method for caffeine quantification by planar chromatography coupled with electropray ionization mass spectrometry using stable isotope dilution analysis. Rapid Commun Mass Spectrom 21(7):1297–1303

    Article  CAS  Google Scholar 

  158. Luftmann H, Aranda M, Morlock GE (2007) Automated interface for hyphenation of planar chromatography with mass spectrometry. Rapid Commun Mass Spectrom 21(23):3772–3776

    Article  CAS  Google Scholar 

  159. Weiss SC, Müller A, Schulz W, Weber WH (2014) HPTLC-MS combined with H/D exchange for the identification of substances in environmental analysis. Camag Bibliogr Serv 113:5–7

    Google Scholar 

  160. Himmelsbach M, Waser M, Klampfl C (2014) Thin layer chromatography–spray mass spectrometry: a method for easy identification of synthesis products and UV filters from TLC aluminum foils. Anal Bioanal Chem 406(15):3647–3656. doi:10.1007/s00216-014-7639-5

    Article  CAS  Google Scholar 

  161. Meier B, Spriano D (2010) Modern HPTLC - a perfect tool for quality control of herbals and their preparations. J AOAC Int 93(5):1399–1409

    CAS  Google Scholar 

  162. Reich E, Schibli A, Debatt A (2008) Validation of high-performance thin-layer chromatographic methods for the identification of botanicals in a cGMP environment. J AOAC Int 91(1):13–20

    CAS  Google Scholar 

  163. Marston A (2011) Thin-layer chromatography with biological detection in phytochemistry. J Chromatogr A 1218(19):2676–2683. doi:10.1016/j.chroma.2010.12.068

    Article  CAS  Google Scholar 

  164. Hostettmann K, Terreaux C, Marston A, Potterat O (1997) The role of planar chromatography in the rapid screening and isolation of bioactive compounds from medicinal plants. J Planar Chromatogr 10:251–257

    CAS  Google Scholar 

  165. Reemtsma T (2001) Prospects of toxicity - directed wastewater analysis. Analytica Chimica Acta 426:279–287

    Article  CAS  Google Scholar 

  166. Morlock GE, Schuele L, Grashorn S (2011) Development of a quantitative high-performance thin-layer chromatographic method for sucralose in sewage effluent, surface water, and drinking water. J Chromatogr A 1218(19):2745–2753. doi:10.1016/j.chroma.2010.11.063

    Article  CAS  Google Scholar 

  167. DIN V 18035-7 (Prestandard) (2002) Sport grounds - Part 7: Synthetic turf areas (in German)

    Google Scholar 

  168. DIN EN 12457-1:2003-01 (2003) Characterization of waste - leaching; compliance test for leaching of granular and sludges - Part 1: One stage batch test at a liquid to solid ration of 2 l/kg with particle size below 4 mm (without or with size reduction) (German version of EN 12457-1:2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan C. Weiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Weiss, S.C., Egetenmeyer, N., Schulz, W. (2016). Coupling of In Vitro Bioassays with Planar Chromatography in Effect-Directed Analysis. In: Reifferscheid, G., Buchinger, S. (eds) In vitro Environmental Toxicology - Concepts, Application and Assessment. Advances in Biochemical Engineering/Biotechnology, vol 157. Springer, Cham. https://doi.org/10.1007/10_2016_16

Download citation

Publish with us

Policies and ethics