Skip to main content
Log in

Rapid and sensitive analysis of progesterone by solid-phase extraction with amino-functionalized metal-organic frameworks coupled to direct analysis in real-time mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Progesterone is the representative progestogens in five major classes of steroid hormones and plays important roles in mammalian pregnancy and animal growth and development. Conventional available analytical methods for progesterone involve immunoassay, gas chromatography-mass spectrometry (GC-MS), and high-performance liquid chromatography-mass spectrometry (HPLC-MS), which lack specificity or usually require sophisticated operations and relatively long time. Herein, we developed a novel strategy for rapid analysis of progesterone via direct analysis in real time mass spectrometry (DART-MS) combined with solid-phase extraction (SPE) using an amino functionalized metal-organic frameworks (MOFs). Under optimized conditions, a wide linear range of 0.5–500 ng mL−1 was achieved, with a satisfactory correlation coefficient (R2 = 0.9992). The relative standard deviations (RSDs) were in the range from 2.4 to 8.4%, demonstrating good precision. The applicability was then confirmed by analyzing spiked lake water and synthetic urine samples, and recoveries are between 92.0 and 117.8% in all three spiked levels (5, 25, and 100 ng mL−1). The sensitivity was notably improved compared with solely DART-MS and obtained detection limit decreased by about 50 times. This research provided a rapid, simple, highly sensitive, and efficient approach for analysis of hormones through combination of advantages of ambient mass spectrometry and porous nanomaterials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gomez-sanchez CE, Zhou MY, Cozza EN, Morita H, Eddleman FC, Gomez-sanchez EP. Corticosteroid synthesis in the central nervous system. Endocr Rev. 1996;22(4):463–70.

    CAS  Google Scholar 

  2. Litwack G. Chapter 16 - Steroid hormones. In: Litwack G, editor. Human biochemistry. Boston: Academic Press; 2018. p. 467–506.

    Chapter  Google Scholar 

  3. Taraborrelli S. Physiology, production and action of progesterone. Acta Obstet Gynecol Scand. 2015;94(S161):8–16.

    Article  PubMed  CAS  Google Scholar 

  4. Lange CA. Challenges to defining a role for progesterone in breast cancer. Steroids. 2008;73(9–10):914–21.

    Article  PubMed  CAS  Google Scholar 

  5. Oettel M, Mukhopadhyay AK. Progesterone: the forgotten hormone in men? Aging Male. 2004;7(3):236–57.

    Article  PubMed  CAS  Google Scholar 

  6. Ku CW, Allen JC, Malhotra R, Chong HC, Tan NS, Østbye T, et al. How can we better predict the risk of spontaneous miscarriage among women experiencing threatened miscarriage? Gynecol Endocrinol. 2015;31(8):647–51.

    Article  PubMed  Google Scholar 

  7. Qureshi NS. Treatment options for threatened miscarriage. Maturitas. 2009;65:S35–41.

    Article  PubMed  CAS  Google Scholar 

  8. Murray H, Baakdah H, Bardell T, Tulandi T. Diagnosis and treatment of ectopic pregnancy. Can Med Assoc J. 2005;173(8):905–12.

    Article  Google Scholar 

  9. Kumar V, Johnson AC, Trubiroha A, Tumová J, Ihara M, Grabic R, et al. The challenge presented by progestins in ecotoxicological research: a critical review. Environ Sci Technol. 2015;49(5):2625–38.

    Article  PubMed  CAS  Google Scholar 

  10. Adeel M, Song X, Wang Y, Francis D, Yang Y. Environmental impact of estrogens on human, animal and plant life: a critical review. Environ Int. 2017;99:107–19.

    Article  PubMed  CAS  Google Scholar 

  11. Yu W, Du B, Yang L, Zhang Z, Yang C, Yuan S, et al. Occurrence, sorption, and transformation of free and conjugated natural steroid estrogens in the environment. Environ Sci Pollut R. 2019;26(10):9443–68.

    Article  CAS  Google Scholar 

  12. Jacobs MN, Marczylo EL, Guerrero-Bosagna C, Rüegg J. Marked for life: epigenetic effects of endocrine disrupting chemicals. Annu Rev Environ Resour. 2017;42(1):105–60.

    Article  Google Scholar 

  13. Wudy SA, Schuler G, Sánchez-Guijo A, Hartmann MF. The art of measuring steroids: principles and practice of current hormonal steroid analysis. J Steroid Biochem Mol Biol. 2018;179:88–103.

    Article  PubMed  CAS  Google Scholar 

  14. Guedes-Alonso R, Montesdeoca-Esponda S, Sosa-Ferrera Z, Santana-Rodríguez JJ. Liquid chromatography methodologies for the determination of steroid hormones in aquatic environmental systems. Trends Environ Anal Chem. 2014;3–4:14–27.

    Article  CAS  Google Scholar 

  15. Noppe H, Le Bizec B, Verheyden K, De Brabander HF. Novel analytical methods for the determination of steroid hormones in edible matrices. Anal Chim Acta. 2008;611(1):1–16.

    Article  PubMed  CAS  Google Scholar 

  16. Sosa-Ferrera Z, Mahugo-Santana C, Santana-Rodríguez JJ. Analytical methodologies for the determination of endocrine disrupting compounds in biological and environmental samples. Biomed Res Int. 2013;2013:23.

    Article  CAS  Google Scholar 

  17. Ouml, Ouml, G S, aacute, ndor. Recent advances in the analysis of steroid hormones and related drugs. Anal Sci 2004;20(5):767–782.

  18. Holst JP, Soldin OP, Guo T, Soldin SJ. Steroid hormones: relevance and measurement in the clinical laboratory. Clin Lab Med. 2004;24(1):105–18.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Feider CL, Krieger A, DeHoog RJ, Eberlin LS. Ambient ionization mass spectrometry: recent developments and applications. Anal Chem. 2019;91(7):4266–90.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang W, Wang X, Xia Y, Ouyang Z. Ambient ionization and miniature mass spectrometry systems for disease diagnosis and therapeutic monitoring. Theranostics. 2017;7(12):2968–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Zhang X-L, Zhang H, Wang X-C, Huang K-K, Wang D, Chen H-W. Advances in ambient ionization for mass spectrometry. Chin J Anal Chem. 2018;46(11):1703–13.

    Article  CAS  Google Scholar 

  22. Takáts Z, Wiseman JM, Gologan B, Cooks RG. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 2004;306(5695):471–3.

    Article  PubMed  CAS  Google Scholar 

  23. Cody RB, Laramée JA, Durst HD. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem. 2005;77(8):2297–302.

    Article  PubMed  CAS  Google Scholar 

  24. Harper JD, Charipar NA, Mulligan CC, Zhang X, Cooks RG, Ouyang Z. Low-temperature plasma probe for ambient desorption ionization. Anal Chem. 2008;80(23):9097–104.

    Article  PubMed  CAS  Google Scholar 

  25. Wang H, Liu J, Cooks RG, Ouyang Z. Paper spray for direct analysis of complex mixtures using mass spectrometry. Angew Chem Int Ed. 2010;49(5):877–80.

    Article  CAS  Google Scholar 

  26. Kertesz V, Van Berkel GJ. Fully automated liquid extraction-based surface sampling and ionization using a chip-based robotic nanoelectrospray platform. J Mass Spectrom. 2010;45(3):252–60.

    Article  PubMed  CAS  Google Scholar 

  27. Gross JH. Direct analysis in real time—a critical review on DART-MS. Anal Bioanal Chem. 2014;406(1):63–80.

    Article  PubMed  CAS  Google Scholar 

  28. Li X, Wang X, Li L, Bai Y, Liu H. Direct analysis in real time mass spectrometry: a powerful tool for fast analysis. Mass Spectrom Lett. 2015;6.

  29. Pavlovich MJ, Musselman B, Hall AB. Direct analysis in real time—mass spectrometry (DART-MS) in forensic and security applications. Mass Spectrom Rev. 2018;37(2):171–87.

    Article  PubMed  CAS  Google Scholar 

  30. Guo T, Yong W, Jin Y, Zhang L, Liu J, Wang S, et al. Applications of DART-MS for food quality and safety assurance in food supply chain. Mass Spectrom Rev. 2017;36(2):161–87.

    Article  PubMed  CAS  Google Scholar 

  31. Hajslova J, Cajka T, Vaclavik L. Challenging applications offered by direct analysis in real time (DART) in food-quality and safety analysis. TrAC Trends Anal Chem. 2011;30(2):204–18.

    Article  CAS  Google Scholar 

  32. Buszewski B, Szultka M. Past, present, and future of solid phase extraction: a review. Crit Rev Anal Chem. 2012;42(3):198–213.

    Article  CAS  Google Scholar 

  33. Płotka-Wasylka J, Szczepańska N, de la Guardia M, Namieśnik J. Modern trends in solid phase extraction: new sorbent media. TrAC Trends Anal Chem. 2016;77:23–43.

    Article  CAS  Google Scholar 

  34. Chisvert A, Cárdenas S, Lucena R. Dispersive micro-solid phase extraction. TrAC Trends Anal Chem. 2019;112:226–33.

    Article  CAS  Google Scholar 

  35. Yaghi OM, Li G, Li H. Selective binding and removal of guests in a microporous metal–organic framework. Nature. 1995;378(6558):703–6.

    Article  CAS  Google Scholar 

  36. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science. 2013;341(6149):1230444.

    Article  PubMed  CAS  Google Scholar 

  37. Li H, Wang K, Sun Y, Lollar CT, Li J, Zhou H-C. Recent advances in gas storage and separation using metal–organic frameworks. Mater Today. 2018;21(2):108–21.

    Article  CAS  Google Scholar 

  38. Jiao L, Wang Y, Jiang H-L, Xu Q. Metal–organic frameworks as platforms for catalytic applications. Adv Mater. 2018;30(37):1703663.

    Article  CAS  Google Scholar 

  39. Li L, Shen S, Lin R, Bai Y, Liu H. Rapid and specific luminescence sensing of Cu(II) ions with a porphyrinic metal–organic framework. Chem Commun. 2017;53(72):9986–9.

    Article  CAS  Google Scholar 

  40. Li L, Shen S, Su J, Ai W, Bai Y, Liu H. Facile one-step solvothermal synthesis of a luminescent europium metal-organic framework for rapid and selective sensing of uranyl ions. Anal Bioanal Chem. 2019;411(18):4213–20.

    Article  PubMed  CAS  Google Scholar 

  41. Dhaka S, Kumar R, Deep A, Kurade MB, Ji S-W, Jeon B-H. Metal–organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coord Chem Rev. 2019;380:330–52.

    Article  CAS  Google Scholar 

  42. Li L, Ma W, Shen S, Huang H, Bai Y, Liu H. A combined experimental and theoretical study on the extraction of uranium by amino-derived metal–organic frameworks through post-synthetic strategy. ACS Appl Mater Interfaces. 2016;8(45):31032–41.

    Article  PubMed  CAS  Google Scholar 

  43. Wang L, Zheng M, Xie Z. Nanoscale metal–organic frameworks for drug delivery: a conventional platform with new promise. J Mater Chem B. 2018;6(5):707–17.

    Article  PubMed  CAS  Google Scholar 

  44. Lu K, Aung T, Guo N, Weichselbaum R, Lin W. Nanoscale metal–organic frameworks for therapeutic, imaging, and sensing applications. Adv Mater. 2018;30(37):1707634.

    Article  CAS  Google Scholar 

  45. Zhang J, Chen Z. Metal-organic frameworks as stationary phase for application in chromatographic separation. J Chromatogr A. 2017;1530:1–18.

    Article  PubMed  CAS  Google Scholar 

  46. Wang Y, Rui M, Lu G. Recent applications of metal–organic frameworks in sample pretreatment. J Sep Sci. 2018;41(1):180–94.

    Article  PubMed  CAS  Google Scholar 

  47. Li X, Xing J, Chang C, Wang X, Bai Y, Yan X, et al. Solid-phase extraction with the metal–organic framework MIL-101(Cr) combined with direct analysis in real time mass spectrometry for the fast analysis of triazine herbicides. J Sep Sci. 2014;37(12):1489–95.

    Article  PubMed  CAS  Google Scholar 

  48. Wang X, Li X, Li Z, Zhang Y, Bai Y, Liu H. Online coupling of in-tube solid-phase microextraction with direct analysis in real time mass spectrometry for rapid determination of triazine herbicides in water using carbon-nanotubes-incorporated polymer monolith. Anal Chem. 2014;86(10):4739–47.

    Article  PubMed  CAS  Google Scholar 

  49. Zhai Y, Li N, Lei L, Yang X, Zhang H. Dispersive micro-solid-phase extraction of hormones in liquid cosmetics with metal–organic framework. Anal Methods. 2014;6(23):9435–45.

    Article  CAS  Google Scholar 

  50. Rocío-Bautista P, Pino V, Pasán J, López-Hernández I, Ayala JH, Ruiz-Pérez C, et al. Insights in the analytical performance of neat metal-organic frameworks in the determination of pollutants of different nature from waters using dispersive miniaturized solid-phase extraction and liquid chromatography. Talanta. 2018;179:775–83.

    Article  PubMed  CAS  Google Scholar 

  51. Lan H, Pan D, Sun Y, Guo Y, Wu Z. Thin metal organic frameworks coatings by cathodic electrodeposition for solid-phase microextraction and analysis of trace exogenous estrogens in milk. Anal Chim Acta. 2016;937:53–60.

    Article  PubMed  CAS  Google Scholar 

  52. Vilela CLS, Bassin JP, Peixoto RS. Water contamination by endocrine disruptors: impacts, microbiological aspects and trends for environmental protection. Environ Pollut. 2018;235:546–59.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (Nos. 81920108033, 21904089, 81530096, 81573581), Shanghai Sailing Program (No. 19YF1448800), and the China Postdoctoral Science Foundation Funded Project (No. 2019M661597).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Yang or Zhengtao Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1.16 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Chen, Y., Yang, Y. et al. Rapid and sensitive analysis of progesterone by solid-phase extraction with amino-functionalized metal-organic frameworks coupled to direct analysis in real-time mass spectrometry. Anal Bioanal Chem 412, 2939–2947 (2020). https://doi.org/10.1007/s00216-020-02535-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02535-6

Keywords

Navigation