Skip to main content

Advertisement

Log in

Mapping binding epitopes of monoclonal antibodies targeting major histocompatibility complex class I chain-related A (MICA) with hydrogen/deuterium exchange and electron-transfer dissociation mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Major histocompatibility complex class I chain-related A and B (MICA/B) are cell-surface proteins that act as ligands to natural killer cell receptors, NKG2D, expressed on immune cells. Prevention of proteolytic shedding of MICA/B to retain their integrity on the cell surface has become a therapeutic strategy in immuno-oncology. Given the unique mechanism of MICA/B shedding, structural characterization of MICA/B and therapeutic agent interaction is important in the drug discovery process. In this study, we describe the practical utility of hydrogen/deuterium exchange mass spectrometry (HDX-MS) in epitope mapping studies of a cohort of four monoclonal antibodies targeting MICA in a rapid manner. HDX-MS followed by electron-transfer dissociation allows high-resolution refinement of binding epitopes. This integrated strategy offers, for the first time, molecular-level understanding of MICA’s conformational dynamics in solution as well as the unique mechanism of actions of these antibodies in targeting MICA.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science. 1999;285:727–9.

    Article  CAS  Google Scholar 

  2. Groh V, Steinle A, Bauer S, Spies T. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science. 1998;279:1737–40.

    Article  CAS  Google Scholar 

  3. Wu J, Groh V, Spies T. T cell antigen receptor engagement and specificity in the recognition of stress-inducible MHC class I-related chains by human epithelial γδ T cells. J Immunol. 2002;169:1236–40.

    Article  CAS  Google Scholar 

  4. Toledano T, Vitenshtein A, Stern-Ginossar N, Seidel E, Mandelboim O. Decay of the stress-induced ligand MICA is controlled by the expression of an alternative 3′ untranslated region. J Immunol. 2018;200:2819–25.

    Article  CAS  Google Scholar 

  5. Diefenbach A, Jamieson AM, Liu SD, Shastri N, Raulet DH. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat Immunol. 2000;1(2):119–26.

    Article  CAS  Google Scholar 

  6. Groh V, Rhinehart R, Randolph-Habecker J, Topp MS, Riddell SR, Spies T. Costimulation of CD8αβ T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol. 2001;2(3):255–60.

    Article  CAS  Google Scholar 

  7. Groh V, Wu J, Yee C, Spies T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature. 2002;419(6908):734–8.

    Article  CAS  Google Scholar 

  8. Salih HR, Rammensee H-G, Steinle A. Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding. J Immunol. 2002;169:4098–102.

    Article  CAS  Google Scholar 

  9. Kaiser BK, Yim D, Chow IT, Gonzalez S, Dai Z, Mann HH, et al. Disulphide-isomerase-enabled shedding of tumour-associated NKG2D ligands. Nature. 2007;447:482.

    Article  CAS  Google Scholar 

  10. Ferrari de Andrade L, Tay RE, Pan D, Luoma AM, Ito Y, Badrinath S, et al. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell–driven tumor immunity. Science. 2018;359:1537–42.

    Article  CAS  Google Scholar 

  11. Zhang Y, Han M, Vorhaben R, Giang C, Lavingia B, Stastny P. Study of MICA alleles in 201 African Americans by multiplexed single nucleotide extension (MSNE) typing. Hum Immunol. 2003;64(1):130–6.

    Article  CAS  Google Scholar 

  12. Kashiwase H, Ishimura M, Ishikawa Y, Nishigaki T. Characterization of one monoclonal antibody against feline immunodeficiency virus p24 and its application to antigen capture ELISA. J Virol Methods. 1997;68(2):183–92.

    Article  CAS  Google Scholar 

  13. Kang M, Kim SY, An SSA, Ju YR. Characterizing affinity epitopes between prion protein and [beta]-amyloid using an epitope mapping immunoassay. Exp Mol Med. 2013;45:e34.

    Article  Google Scholar 

  14. Cho YK, Chen I, Wei X, Li L, Shusta EV. A yeast display immunoprecipitation method for efficient isolation and characterization of antigens. J Immunol Methods. 2009;341(1–2):117–26.

    Article  CAS  Google Scholar 

  15. Jin L, Fendly BM, Wells JA. High resolution functional analysis of antibody-antigen interactions. J Mol Biol. 1992;226(3):851–65.

    Article  CAS  Google Scholar 

  16. Huang RYC, Chen G. Higher order structure characterization of protein therapeutics by hydrogen/deuterium exchange mass spectrometry. Anal Bioanal Chem. 2014;406(26):6541–58.

    Article  CAS  Google Scholar 

  17. Huang RYC, Krystek SR, Felix N, Graziano RF, Srinivasan M, Pashine A, et al. Hydrogen/deuterium exchange mass spectrometry and computational modeling reveal a discontinuous epitope of an antibody/TL1A Interaction. mAbs. 2018;10(1):95–103.

    Article  CAS  Google Scholar 

  18. Puchades C, Kűkrer B, Diefenbach O, Sneekes-Vriese E, Juraszek J, Koudstaal W, et al. Epitope mapping of diverse influenza Hemagglutinin drug candidates using HDX-MS. Sci Rep. 2019;9(1):4735.

    Article  Google Scholar 

  19. Zhu S, Liuni P, Ettorre L, Chen T, Szeto J, Carpick B, et al. Hydrogen–deuterium exchange epitope mapping reveals distinct neutralizing mechanisms for two monoclonal antibodies against diphtheria toxin. Biochemistry. 2019;58(6):646–56.

    Article  CAS  Google Scholar 

  20. Iacob RE, Chen G, Ahn J, Houel S, Wei H, Mo J, et al. The influence of Adnectin binding on the extracellular domain of epidermal growth factor receptor. J Am Soc Mass Spectrom. 2014;25(12):2093–102.

    Article  CAS  Google Scholar 

  21. Wei H, Mo J, Tao L, Russell RJ, Tymiak AA, Chen G, et al. Hydrogen/deuterium exchange mass spectrometry for probing higher order structure of protein therapeutics: methodology and applications. Drug Discov Today. 2014;19(1):95–102.

    Article  CAS  Google Scholar 

  22. Iacob RE, Krystek SR, Huang RYC, Wei H, Tao L, Lin Z, et al. Hydrogen/deuterium exchange mass spectrometry applied to IL-23 interaction characteristics: potential impact for therapeutics. Expert Rev Proteomics. 2015;12(2):159–69.

    Article  CAS  Google Scholar 

  23. Huang RYC, Iacob RE, Sankaranarayanan S, Yang L, Ahlijanian M, Tao L, et al. Probing conformational dynamics of tau protein by hydrogen/deuterium exchange mass spectrometry. J Am Soc Mass Spectrom. 2018;29(1):174–82.

    Article  CAS  Google Scholar 

  24. Huang RYC, Tymiak AA, Chen G. Utility of hydrogen exchange mass spectrometry in epitope mapping. Hydrog Exch Mass Spectrom Proteins. 2016:247–63.

  25. Zehl M, Rand KD, Jensen ON, Jørgensen TJD. Electron transfer dissociation facilitates the measurement of deuterium incorporation into selectively labeled peptides with single residue resolution. J Am Chem Soc. 2008;130(51):17453–9.

    Article  CAS  Google Scholar 

  26. Rand KD, Zehl M, Jensen ON, Jørgensen TJD. Protein hydrogen exchange measured at single-residue resolution by electron transfer dissociation mass spectrometry. Anal Chem. 2009;81(14):5577–84.

    Article  CAS  Google Scholar 

  27. Huang RYC, Garai K, Frieden C, Gross ML. Hydrogen/deuterium exchange and electron-transfer dissociation mass spectrometry determine the interface and dynamics of apolipoprotein E oligomerization. Biochemistry. 2011;50(43):9273–82.

    Article  CAS  Google Scholar 

  28. Landgraf RR, Chalmers MJ, Griffin PR. Automated hydrogen/deuterium exchange electron transfer dissociation high resolution mass spectrometry measured at single-amide resolution. J Am Soc Mass Spectrom. 2012;23(2):301–9.

    Article  CAS  Google Scholar 

  29. Wales TE, Fadgen KE, Gerhardt GC, Engen JR. High-speed and high-resolution UPLC separation at zero degrees celsius. Anal Chem. 2008;80(17):6815–20.

    Article  CAS  Google Scholar 

  30. Rand KD, Zehl M, Jensen ON, Jørgensen TJD. Loss of ammonia during electron-transfer dissociation of deuterated peptides as an inherent gauge of gas-phase hydrogen scrambling. Anal Chem. 2010;82(23):9755–62.

    Article  CAS  Google Scholar 

  31. Li P, Morris DL, Willcox BE, Steinle A, Spies T, Strong RK. Complex structure of the activating immunoreceptor NKG2D and its MHC class I–like ligand MICA. Nat Immunol. 2001;2(5):443–51.

    Article  CAS  Google Scholar 

  32. Li P, Willie ST, Bauer S, Morris DL, Spies T, Strong RK. Crystal structure of the MHC class I homolog MIC-A, a γδ T cell ligand. Immunity. 1999;10(5):577–84.

    Article  CAS  Google Scholar 

  33. Wang X, Lundgren AD, Singh P, Goodlett DR, Plymate SR, Wu JD. An six-amino acid motif in the α3 domain of MICA is the cancer therapeutic target to inhibit shedding. Biochem Biophys Res Commun. 2009;387(3):476–81.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Drs. Olafur Gudmundsson, Arvind Rajpal, Lois Lehman-McKeeman and Bruce Car from Bristol-Myers Squibb for their support of this project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Richard Y.-C. Huang or Guodong Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 946 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, R.YC., Kuhne, M., Deshpande, S. et al. Mapping binding epitopes of monoclonal antibodies targeting major histocompatibility complex class I chain-related A (MICA) with hydrogen/deuterium exchange and electron-transfer dissociation mass spectrometry. Anal Bioanal Chem 412, 1693–1700 (2020). https://doi.org/10.1007/s00216-020-02409-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02409-x

Keywords

Navigation