Skip to main content
Log in

Rhodnius spp. are differentiated based on the peptide/protein profile by matrix-assisted laser desorption/ionization mass spectrometry and chemometric tools

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Triatominae are hematophagous insects involved in the transmission of Chagas disease. Among the 19 genera of the subfamily, those with the highest epidemiological importance regarding the dissemination of Trypanosoma cruzi are Panstrongylus, Rhodnius, and Triatoma. Of these three genera, Rhodnius presents the greatest difficulties for specific identification. Thus, there is a need to overcome the difficulties in identifying phenotypes of similar species of this genus. In the present study, the MALDI-TOF MS methodology was used to identify 12 Rhodnius species, among the 21 admitted. The MALDI-TOF MS methodology allowed specific characterization through the identification of peptides and proteins, starting from four different methods of extraction: (A) acetonitrile/formic acid (ACN/AF), (B) acetonitrile/trifluoroacetic acid (ACN/TFA), (C) isopropyl/formic acid (IPA/AF), and (D) methanol/formic acid (MeOH/AF), and four types of MALDI-TOF matrices: α-cyano-4-hydroxycinnamic acid (CHCA), sinapic acid (SA), 6-aza-2-thiothymine (ATT), and 2,6-dihydroxyacetophenone (DHAP). The experiments were performed by combining the four solvents and four matrices to select the best MALDI extraction/matrix. The application of the MALDI-TOF MS technique, through the digital mass spectrometry approach combined with chemometric tools, such as partial least squares-discriminant analysis (PLS-DA), was able to discriminate 12 species of Rhodnius genus, which are difficult to identify using morphological characteristics. Thus, in view of the results obtained, the methodology described in the present article can be applied with speed and efficiency for the discrimination of Triatominae species.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. World Health Organization (WHO). Neglected tropical diseases. Genève: WHO; 2018. http://www.who.int/neglected_diseases/en/. Accessed 30 Aug 2018.

  2. World Health Organization (WHO). Neglected tropical diseases. Genève: WHO; 2018. http://www.who.int/en/news-room/fact-sheets/detail/chagas-disease-(american trypanosomiasis). Accessed 30 Aug 2018.

  3. Chagas C. Nova tripanossomiaze humana. Estudos sobre a morfologia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp. agente etiologico da nova entidade mórbida do homem. Mem Inst Oswaldo Cruz. 1909;1:161–218.

    Article  Google Scholar 

  4. Lima-Cordón RA, Monroy MC, Stevens L, Rodas A, Rodas GA, Dorn PL, et al. Description of Triatoma huehuetenanguensis sp. n., a potential Chagas disease vector (Hemiptera, Reduviidae, Triatominae). ZooKeys. 2019;820:51–70.

    Article  Google Scholar 

  5. Poinar G. A primitive triatomine bug, Paleotriatoma metaxytaxa gen. et sp. nov. (Hemiptera: Reduviidae: Triatominae), in mid-cretaceous amber from northern Myanmar. Cretac Res. 2018;93:90–7.

    Article  Google Scholar 

  6. Galvão C, Carcavallo R, Rocha DDS, Jurberg J. A checklist of the current valid species of the subfamily Triatominae Jeannel, 1919 (Hemiptera, Reduviidae) and their geographical distribution, with nomenclatural and taxonomic notes. Zootaxa. 2003;202:1.

    Article  Google Scholar 

  7. Rosa JA, Rocha CS, Gardim S, Mendonça MCPVJ, Filho, Júlio CRF, et al. Description of Rhodnius montenegrensis n. sp. (Hemiptera: Reduviidae: Triatominae) from the state of Rondônia, Brazil. Zootaxa. 2012;3478:62–76.

    Article  Google Scholar 

  8. Abad-Franch F, Pavan MG, Jaramillo-O N, Palomeque FS, Dale C, Chaverra D, et al. Rhodnius barretti, a new species of Triatominae (Hemiptera: Reduviidae) from western Amazonia. Mem Inst Oswaldo Cruz. 2013;108:92–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Souza ED, Von Atzingen NC, Furtado MB, de Oliveira J, Nascimento JD, Vendrami DP, et al. Description of Rhodnius marabaensis sp. n. (Hemiptera, Reduviidae, Triatominae) from Pará State, Brazil. ZooKeys. 2016;621:45–62.

    Article  Google Scholar 

  10. Soares RP, Sant'Anna MR, Gontijo NF, Romanha AJ, Diotaiuti L, Pereira MH. Identification of morphologically similar Rhodnius species (Hemiptera: Reduviidae: Triatominae) by electrophoresis of salivary heme proteins. Am J Trop Med Hyg. 2000;62:157–61.

    Article  CAS  PubMed  Google Scholar 

  11. Perez R, Panzera Y, Scafiezzo S, Mazzella MC, Panzera F, Dujardin JP, et al. Cytogenetics as a tool for Triatomine species distinction (Hemiptera-Reduviidae). Mem Inst Oswaldo Cruz. 1992;87:353–61.

    Article  CAS  PubMed  Google Scholar 

  12. Monteiro FA, Lazoski C, Noireau F, Solé-Cava AM. Allozyme relationships among ten species of Rhodniini, showing paraphyly of Rhodnius including Psammolestes. Med Vet Entomol. 2002;16:83–90.

    Article  CAS  PubMed  Google Scholar 

  13. Teixeira ARL, Monteiro PS, Rebelo JM, Argañaraz ER, Vieira D, Lauria-Pires L, et al. Emerging Chagas disease: trophic network and cycle of transmission of Trypanosoma cruzi from palm trees in the Amazon. Emerg Infect Dis. 2001;7:100–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dias JP, Bastos C, Araújo E, Mascarenhas AV, Martins Netto E, Grassi F, et al. Acute Chagas disease outbreak associated with oral transmission. Rev Soc Bras Med Trop. 2008;41:296–300.

    Article  PubMed  Google Scholar 

  15. Pinto AY, Valente SA, Valente VC, Ferreira Junior AG, Coura JR. Acute phase of Chagas disease in the Brazilian Amazon region: study of 233 cases from Pará, Amapá and Maranhão observed between 1988 2005. Rev Soc Bras Med Trop. 2008;41:602–14.

    Article  PubMed  Google Scholar 

  16. Gillett JD. The genital sterna of the immature stages of Rhodnius prolixus (Hemiptera). Trans R Entomol Soc of Lond. 1935;83:1–5.

    Article  Google Scholar 

  17. Soares RP, Barbosa S, Dujardin JP, Schofield CJ, Siqueira AM, Diotaiuti L. Characterization of Rhodnius neglectus from two regions of Brazil using isoenzymes, genitalia morphology and morphometry. Mem Inst Oswaldo Cruz. 1999;94:161–6.

    Article  CAS  PubMed  Google Scholar 

  18. Harry M. Morphometric variability in the Chagas’ disease vector Rhodnius prolixus. The Jap J of Genet. 1994;69:233–50.

    Article  CAS  Google Scholar 

  19. Dias JCP. Epidemiological surveillance of Chagas disease. Cad Saúde Pública. 2000;16:S43–59.

    Article  Google Scholar 

  20. Coura JR, Dias JCP. Epidemiology, control and surveillance of Chagas disease: 100 years after its discovery. Mem Inst Oswaldo Cruz. 2009;104:31–40.

    Article  PubMed  Google Scholar 

  21. Schofield CJ, Jannin J, Salvatella R. The future of Chagas disease control. Trends Parasitol. 2006;2212:583–8.

    Article  Google Scholar 

  22. Coura JR. The main sceneries of Chagas disease transmission. The vectors, blood and oral transmissions-a comprehensive review. Mem Inst Oswaldo Cruz. 2015;110:277–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alevi KC, Rodas LA, Tartarotti E, Azeredo-Oliveira MT, Guirado MM. Entoepidemiology of Chagas disease in the Western region of the state of São Paulo from 2004 to 2008, and cytogenetic analysis in Rhodnius neglectus (Hemiptera, Triatominae). Genet Mol Res. 2015;14:5775–84.

    Article  CAS  PubMed  Google Scholar 

  24. Díaz S, Panzera F, Jaramillo-O N, Pérez R, Fernández R, Vallejo G, et al. Genetic, cytogenetic and morphological trends in the evolution of the Rhodnius (Triatominae: Rhodniini) trans-Andean group. PLoS One. 2014;9:e87493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Da Rosa J, Mendonça V, Gardim S, de Carvalho D, de Oliveira J, Nascimento JD, et al. Study of the external female genitalia of 14 Rhodnius species (Hemiptera, Reduviidae, Triatominae) using scanning electron microscopy. Parasit Vectors. 2014;7:1–17.

    Article  Google Scholar 

  26. Alevi KC, Ravazi A, Mendonça VJ, Rosa JA, Azeredo-Oliveira MT. Karyotype of Rhodnius montenegrensis (Hemiptera, Triatominae). Genetic Mol Res. 2015;12:222–6.

    Article  Google Scholar 

  27. Alevi KC, Ravazi A, Franco-Bernardes MF, Rosa JA, Azeredo-Oliveira MT. Chromosomal evolution in the pallescens group (Hemiptera, Triatominae). Genetic Mol Res. 2015;14:12654–9.

    Article  CAS  Google Scholar 

  28. Brenière SF, Condori EW, Buitrago R, Sosa LF, Macedo CL, Barnabé C. Molecular identification of wild triatomines of the genus Rhodnius in the Bolivian Amazon: strategy and current difficulties. Infect Genet Evol. 2017;51:1–9.

    Article  CAS  PubMed  Google Scholar 

  29. Justi SA, Russo CAM, Mallet J, Obara M, Galvão C. Molecular phylogeny of Triatomini (Hemiptera: Reduviidae: Triatominae). Parasit Vectors. 2014;7:149.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bargues MD, Schofield C, Dujardin JP. Classification and systematics of the Triatominae. American Trypanosomiasis Chagas Disease (Second Edition). 2017:113–43.

  31. Murugaiyan J, Roesler U. MALDI-TOF MS profiling-advances in species identification of pests, parasites, and vectors. Front Cell Infect Microbiol. 2017;7:184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Giffen JE, Rosati JY, Longo CM, Musah RA. Species identification of Necrophagous insect eggs based on amino acid profile differences revealed by direct analysis in real time-high resolution mass spectrometry. Anal Chem. 2017;89:7719–26.

    Article  CAS  PubMed  Google Scholar 

  33. Ulrich S, Kühn U, Biermaier B, Piacenza N, Schwaiger K, Gottschalk C, et al. Direct identification of edible insects by MALDI-TOF mass spectrometry. Food Control. 2017;76:96–101.

    Article  CAS  Google Scholar 

  34. Yssouf A, Almeras L, Raoult D, Parola P. Emerging tools for identification of arthropod vectors future. Microbiol. 2016;11:49–566.

    Google Scholar 

  35. Yssouf A, Parola P, Lindström A, Lilja T, L’Ambert G, Bondesson U, et al. Identification of European mosquito species by MALDI-TOF MS. Parasitol Res. 2014a;113:2375–8.

    Article  PubMed  Google Scholar 

  36. Yssouf A, Socolovschi C, Leulmi H, Kernif T, Bitam I, Audoly G, et al. Identification of flea species using MALDI-TOF/MS. Comp Immunol Microbiol Infect Dis. 2014;37:153–7.

    Article  PubMed  Google Scholar 

  37. Dvorak V, Halada P, Hlavackova K, Dokianakis E, Antoniou M, Volf P. Identification ofphlebotomine sand flies (Diptera: Psychodidae) by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Parasit and Vectors. 2014;7:1–7.

    Article  Google Scholar 

  38. Sambou M, Aubadie-Ladrix M, Fenollar F, Fall B, Bassene H, Almeras L, et al. Comparison of matrix-assisted laser desorption ionization-time of flight mass spectrometry and molecular biology techniques for identification of culicoides (diptera: Ceratopogonidae) biting midges in Senegal. J Clin Microbiol. 2015;53:410–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Steinmann IC, Pflüger V, Schaffner F, Mathis A, Kaufmann C. Evaluation of matrix-assisted laser desorption/ionization time of flight mass spectrometry for the identification of ceratopogonid and culicid larvae. Parasitology. 2013;140:318–27.

    Article  CAS  PubMed  Google Scholar 

  40. Laroche M, Bérenger JM, Gazelle G, Blanchet D, Raoult D, Parola P. MALDI-TOF MS protein profiling for the rapid identification of Chagas disease triatomine vectors and application to the triatomine fauna of French Guiana. Parasitology. 2018;145:665–75.

    Article  CAS  PubMed  Google Scholar 

  41. Souza ES, Fernandes RP, Galvão C, de Paiva VF, da Rosa JA. Distinguishing two species of Cavernicola (Hemiptera, Reduviidae, Triatominae) with matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Acta Trop. 2019;198:105071–3.

    Article  CAS  Google Scholar 

  42. Dos Santos FN, Tata A, Belaz KRA, Magalhães DMA, Luz EDMN, Eberlin MN. Major phytopathogens and strains from cocoa (Theobroma cacao L.) are differentiated by MALDI-MS lipid and/or peptide/protein profiles. Anal Bioanal Chemi. 2016;409:1765–77.

    Article  CAS  Google Scholar 

  43. Marinach-Patrice C, Lethuillier A, Marly A, Brossas JY, Gene J, Symoens F, et al. Use of mass spectrometry to identify clinical Fusarium isolates. Clin Microbiol Infect. 2009;15:634–42.

    Article  CAS  PubMed  Google Scholar 

  44. R Core Team, R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2016. http://www.R-project.org. Accessed 08 Dec 2018.

  45. Ward JH. Hierarchical grouping to optimize an objective function. J Am Stat Assoc. 1963;58:236–44.

    Article  Google Scholar 

  46. Brereton RG, Lloyd GR. Partial least squares discriminant analysis: taking the magic away. J Chemom. 2014;28:213–25.

    Article  CAS  Google Scholar 

  47. Kennard R, Stone LA. Computer aided design of experiments. Technometrics. 1969;11:137–48.

    Article  Google Scholar 

  48. Brown CD, Davis HT. Receiver operating characteristics curves and related decision measures: a tutorial. Chemom Intell Lab Syst. 2006;80:24–38.

    Article  CAS  Google Scholar 

  49. Carcavallo RU, Jurberg J, Lent H, Noireau F, Galvão C. Phylogeny of the Triatominae (Hemiptera: Reduviidae). Proposals for taxonomic arrangements. Entomol Vector. 2000;7:1–99.

    Google Scholar 

  50. Biancolillo A, Bucci R, Magrì AL, Magrì AD, Marini F. Data-fusion for multiplatform characterization of an italian craft beer aimed at its authentication. Anal Chim Acta. 2014;820:23–31.

    Article  CAS  PubMed  Google Scholar 

  51. Mehmood T, Liland KH, Snipen L, Sæbø S. A review of variable selection methods in partial least squares regression. Chemom Intell Lab Syst. 2012;118:62–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the researchers Sebastião Aldo of the Evandro Chagas Institute (IOC), Brazil, who sent us species of R. milesi and Elis Jose Aldana of the University of the Andes of the Department of Biology of Venezuela for granting specimens of R. neivai for the development of this study.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éder dos Santos Souza.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Souza, É., Fernandes, R.P., Guedes, W.N. et al. Rhodnius spp. are differentiated based on the peptide/protein profile by matrix-assisted laser desorption/ionization mass spectrometry and chemometric tools. Anal Bioanal Chem 412, 1431–1439 (2020). https://doi.org/10.1007/s00216-019-02376-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02376-y

Keywords

Navigation