Skip to main content

Advertisement

Log in

Electrochemical DNA biosensors for label-free breast cancer gene marker detection

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We present an electrochemical DNA detection strategy based on self-assembled ferrocene-cored poly(amidoamine) dendrimers for the detection of a gene relevant to breast cancer. The chemisorption of three ferrocene-cored poly(amidoamine) generations and hybridization of single-stranded DNA on a Au electrode were studied by cyclic voltammetry and differential pulse voltammetry. The biosensor demonstrated high sensitivity of 0.13 μA/(ng/ml) in the detection of the target DNA with a linear range of 1.3–20 nM and a detection limit of 0.38 nM. The DNA biosensor also has high selectivity for the target DNA, showing a clear signal difference from a noncomplementary sequence and a single-base-mismatch sequence, which was used as a model of BRAC1 gene mutation. The results shown are highly motivating for exploring DNA biosensing technology in the diagnosis of breast cancer caused by mutation of the BRAC1 gene.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Das M, Sumana G, Nagarajan R, Malhotra BD. Zirconia based nucleic acid sensor for Mycobacterium tuberculosis detection. Appl Phys Lett. 2010;96(13):133703. https://doi.org/10.1063/1.3293447.

    Article  CAS  Google Scholar 

  2. Patel MK, Solanki PR, Kumar A, Khare S, Gupta S, Malhotra BD. Electrochemical DNA sensor for Neisseria meningitidis detection. Biosens Bioelectron. 2010;25(12):2586–91. https://doi.org/10.1016/j.bios.2010.04.025.

    Article  CAS  PubMed  Google Scholar 

  3. Liu S, Su W, Li Z, Ding X. Electrochemical detection of lung cancer specific microRNAs using 3D DNA origami nanostructures. Biosens Bioelectron. 2015;71:57–61. https://doi.org/10.1016/j.bios.2015.04.006.

    Article  CAS  PubMed  Google Scholar 

  4. Rasheed PA, Sandhyarani N. Graphene-DNA electrochemical sensor for the sensitive detection of BRCA1 gene. Sens Actuators B. 2014;204:777–82. https://doi.org/10.1016/j.snb.2014.08.043.

    Article  CAS  Google Scholar 

  5. Borghei Y-S, Hosseini M, Ganjali MR, Ju H. A unique FRET approach toward detection of single-base mismatch DNA in BRCA1 gene. Mater Sci Eng C. 2019;97:406–11. https://doi.org/10.1016/j.msec.2018.12.049.

    Article  CAS  Google Scholar 

  6. Wang Y, Huang X, Li H, Guo L. Sensitive impedimetric DNA biosensor based on (Nb,V) codoped TiO2 for breast cancer susceptible gene detection. Mater Sci Eng C. 2017;77:867–73. https://doi.org/10.1016/j.msec.2017.03.260.

    Article  CAS  Google Scholar 

  7. World Health Organization. Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer (2018).

  8. Sifri R, Gangadharappa S, Acheson LS. Identifying and testing for hereditary susceptibility to common cancers. CA Cancer J Clin. 2004;54(6):309–26. https://doi.org/10.3322/canjclin.54.6.309.

    Article  PubMed  Google Scholar 

  9. Chen L, Liu X, Chen C. Impedimetric biosensor modified with hydrophilic material of tannic acid/polyethylene glycol and dopamine-assisted deposition for detection of breast cancer-related BRCA1 gene. J Electroanal Chem. 2017;791:204–10. https://doi.org/10.1016/j.jelechem.2017.03.001.

    Article  CAS  Google Scholar 

  10. Godet I, Gilkes DM. BRCA1 and BRCA2 mutations and treatment strategies for breast cancer. Integr Cancer Sci Ther. 2017;4(1). https://doi.org/10.15761/icst.1000228.

  11. Coleman MP, Quaresma M, Berrino F, Lutz J-M, De Angelis R, Capocaccia R, et al. Cancer survival in five continents: a worldwide population-based study (CONCORD). Lancet Oncol. 2008;9(8):730–56. https://doi.org/10.1016/S1470-2045(08)70179-7.

    Article  PubMed  Google Scholar 

  12. Jaure O, Alonso EN, Braico DA, Nieto A, Orozco M, Morelli C, et al. BRCA1 polymorphism in breast cancer patients from Argentina. Oncol Lett. 2015;9(2):845–50. https://doi.org/10.3892/ol.2014.2772.

    Article  PubMed  Google Scholar 

  13. Wang J. Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron. 2006;21(10):1887–92. https://doi.org/10.1016/j.bios.2005.10.027.

    Article  CAS  PubMed  Google Scholar 

  14. Amer WA, Wang L, Amin AM, Ma L, Yu H. Recent progress in the synthesis and applications of some ferrocene derivatives and ferrocene-based polymers. J Inorg Organomet Polym Mater. 2010;20(4):605–15. https://doi.org/10.1007/s10904-010-9373-6.

    Article  CAS  Google Scholar 

  15. Fabre B. Ferrocene-terminated monolayers covalently bound to hydrogen-terminated silicon surfaces. toward the development of charge storage and communication devices. Acc Chem Res. 2010;43(12):1509–18. https://doi.org/10.1021/ar100085q.

    Article  CAS  PubMed  Google Scholar 

  16. Dervisevic E, Dervisevic M, Nyangwebah JN, Şenel M. Development of novel amperometric urea biosensor based on Fc-PAMAM and MWCNT bio-nanocomposite film. Sens Actuators B. 2017;246:920–6. https://doi.org/10.1016/j.snb.2017.02.122.

    Article  CAS  Google Scholar 

  17. Şenel M, Abasıyanık MF. Construction of a novel glucose biosensor based on covalent immobilization of glucose oxidase on poly(glycidyl methacrylate-co-vinylferrocene). Electroanalysis. 2010;22(15):1765–71. https://doi.org/10.1002/elan.200900644.

    Article  CAS  Google Scholar 

  18. Miodek A, Mejri-Omrani N, Khoder R, Korri-Youssoufi H. Electrochemical functionalization of polypyrrole through amine oxidation of poly(amidoamine) dendrimers: application to DNA biosensor. Talanta. 2016;154:446–54. https://doi.org/10.1016/j.talanta.2016.03.076.

    Article  CAS  PubMed  Google Scholar 

  19. Dervisevic M, Senel M, Sagir T, Isik S. Boronic acid vs. folic acid: a comparison of the bio-recognition performances by impedimetric cytosensors based on ferrocene cored dendrimer. Biosens Bioelectron. 2017;91:680–6. https://doi.org/10.1016/j.bios.2017.01.030.

    Article  CAS  PubMed  Google Scholar 

  20. Miodek A, Mejri N, Gomgnimbou M, Sola C, Korri-Youssoufi H. E-DNA sensor of Mycobacterium tuberculosis based on electrochemical assembly of nanomaterials (MWCNTs/PPy/PAMAM). Anal Chem. 2015;87(18):9257–64. https://doi.org/10.1021/acs.analchem.5b01761.

    Article  CAS  PubMed  Google Scholar 

  21. Hasanzadeh M, Shadjou N, Eskandani M, Soleymani J, Jafari F, de la Guardia M. Dendrimer-encapsulated and cored metal nanoparticles for electrochemical nanobiosensing. Trends Anal Chem. 2014;53:137–49. https://doi.org/10.1016/j.trac.2013.09.015.

    Article  CAS  Google Scholar 

  22. Bahadır EB, Sezgintürk MK. Poly(amidoamine) (PAMAM): an emerging material for electrochemical bio(sensing) applications. Talanta. 2016;148:427–38. https://doi.org/10.1016/j.talanta.2015.11.022.

    Article  CAS  PubMed  Google Scholar 

  23. D A Tomalia, H Baker, J Dewald, M Hall, G Kallos, S Martin, J Roeck, J Ryder, P Smith, (1985) A New Class of Polymers: Starburst-Dendritic Macromolecules. Polymer Journal 17 (1):117-132

  24. Koc FE, Senel M. Solubility enhancement of non-steroidal anti-inflammatory drugs (NSAIDs) using polypolypropylene oxide core PAMAM dendrimers. Int J Pharma. 2013;451(1-2):18–22. https://doi.org/10.1016/j.ijpharm.2013.04.062.

    Article  CAS  Google Scholar 

  25. Li Q, Yu C, Gao R, Xia C, Yuan G, Li Y, et al. A novel DNA biosensor integrated with polypyrrole/streptavidin and Au-PAMAM-CP bionanocomposite probes to detect the rs4839469 locus of the vangl1 gene for dysontogenesis prediction. Biosens Bioelectron. 2016;80:674–81. https://doi.org/10.1016/j.bios.2016.02.025.

    Article  CAS  PubMed  Google Scholar 

  26. Zhu N, Gao H, Gu Y, Xu Q, He P, Fang Y. PAMAM dendrimer-enhanced DNA biosensors based on electrochemical impedance spectroscopy. Analyst. 2009;134(5):860-6. d https://doi.org/10.1039/B815488K.

  27. Kavosi B, Salimi A, Hallaj R, Moradi F. Ultrasensitive electrochemical immunosensor for PSA biomarker detection in prostate cancer cells using gold nanoparticles/PAMAM dendrimer loaded with enzyme linked aptamer as integrated triple signal amplification strategy. Biosens Bioelectron. 2015;74:915–23. https://doi.org/10.1016/j.bios.2015.07.064.

    Article  CAS  PubMed  Google Scholar 

  28. Borisova B, Sánchez A, Jiménez-Falcao S, Martín M, Salazar P, Parrado C, et al. Reduced graphene oxide-carboxymethylcellulose layered with platinum nanoparticles/PAMAM dendrimer/magnetic nanoparticles hybrids. Application to the preparation of enzyme electrochemical biosensors. Sens Actuators B. 2016;232:84–90. https://doi.org/10.1016/j.snb.2016.02.106.

    Article  CAS  Google Scholar 

  29. Dervisevic M, Dervisevic E, Şenel M. Design of amperometric urea biosensor based on self-assembled monolayer of cystamine/PAMAM-grafted MWCNT/Urease. Sens Actuators B. 2018;254:93–101. https://doi.org/10.1016/j.snb.2017.06.161.

    Article  CAS  Google Scholar 

  30. Dervisevic M, Dervisevic E, Senel M, Cevik E, Yildiz HB, Camurlu P. Construction of ferrocene modified conducting polymer based amperometric urea biosensor. Enzyme Microb Technol. 2017;102:53–9. https://doi.org/10.1016/j.enzmictec.2017.04.002.

    Article  CAS  PubMed  Google Scholar 

  31. Sağır T, Işık S, Şenel M. Ferrocene incorporated PAMAM dendrons: synthesis, characterization, and anti-cancer activity against AGS cell line. Med Chem Res. 2013;22(10):4867–76. https://doi.org/10.1007/s00044-013-0491-x.

    Article  CAS  Google Scholar 

  32. Li A, Yang F, Ma Y, Yang X. Electrochemical impedance detection of DNA hybridization based on dendrimer modified electrode. Biosens Bioelectron. 2007;22(8):1716–22. https://doi.org/10.1016/j.bios.2006.07.033.

    Article  CAS  PubMed  Google Scholar 

  33. Bizid S, Blili S, Mlika R, Haj Said A, Korri-Youssoufi H. Direct electrochemical DNA Sensor based on a new redox oligomer modified with ferrocene and carboxylic acid: application to the detection of Mycobacterium tuberculosis mutant strain. Anal Chim Acta. 2017;994:10–8. https://doi.org/10.1016/j.aca.2017.09.022.

    Article  CAS  PubMed  Google Scholar 

  34. Bizid S, Mlika R, Haj Said A, Chemli M, Korri Youssoufi H. Investigations of poly(p-phenylene) modified with ferrocene and their application in electrochemical DNA sensing. Sens Actuators B. 2016;226:370–80. https://doi.org/10.1016/j.snb.2015.11.137.

    Article  CAS  Google Scholar 

  35. Kuralay F, Erdem A, Abacı S, Özyörük H, Yıldız A. Poly(vinylferrocenium) coated disposable pencil graphite electrode for DNA hybridization. Electrochem Commun. 2009;11(6):1242–6. https://doi.org/10.1016/j.elecom.2009.04.010.

    Article  CAS  Google Scholar 

  36. Steentjes T, Jonkheijm P, Huskens J. Electron transfer processes in ferrocene-modified poly(ethylene glycol) monolayers on electrodes. Langmuir. 2017;33(43):11878–83. https://doi.org/10.1021/acs.langmuir.7b02160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wei-Jie S, Shi-Yun A, Jin-Huan L, Lu-Sheng Z. Electrochemical biosensor based on dendrimer immobilized deoxyribonucleic acid. Chin J Anal Chem. 2008;36(3):335–8. https://doi.org/10.1016/S1872-2040(08)60025-0.

    Article  Google Scholar 

  38. Fan C, Plaxco KW, Heeger AJ. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc Natl Acad Sci U S A. 2003;100(16):9134–7. https://doi.org/10.1073/pnas.1633515100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ren K, Wu J, Ju H, Yan F. Target-driven triple-binder assembly of MNAzyme for amplified electrochemical immunosensing of protein biomarker. Anal Chem. 2015;87(3):1694–700. https://doi.org/10.1021/ac504277z.

    Article  CAS  PubMed  Google Scholar 

  40. Torres-Chavolla E, Alocilja EC. Nanoparticle based DNA biosensor for tuberculosis detection using thermophilic helicase-dependent isothermal amplification. Biosens Bioelectron. 2011;26(11):4614–8. https://doi.org/10.1016/j.bios.2011.04.055.

    Article  CAS  PubMed  Google Scholar 

  41. Baccar ZM, Caballero D, Eritja R, Errachid A. Development of an impedimetric DNA-biosensor based on layered double hydroxide for the detection of long ssDNA sequences. Electrochim Acta. 2012;74:123–9. https://doi.org/10.1016/j.electacta.2012.04.031.

    Article  CAS  Google Scholar 

  42. Tak M, Gupta V, Tomar M. An electrochemical DNA biosensor based on Ni doped ZnO thin film for meningitis detection. J Electroanal Chem. 2017;792:8–14. https://doi.org/10.1016/j.jelechem.2017.03.032.

    Article  CAS  Google Scholar 

  43. Tak M, Gupta V, Tomar M. A ZnO–CNT nanocomposite based electrochemical DNA biosensor for meningitis detection. RSC Adv. 2016;6(80):76214–22. https://doi.org/10.1039/C6RA12453D.

    Article  CAS  Google Scholar 

  44. Hatamluyi B, Es'haghi Z. Quantitative biodetection of anticancer drug Rituxan with DNA biosensor modified PAMAM dendrimer/reduced graphene oxide nanocomposite. Electroanalysis. 2018;30(8):1659–68. https://doi.org/10.1002/elan.201800014.

    Article  CAS  Google Scholar 

  45. Arotiba O, Owino J, Songa E, Hendricks N, Waryo T, Jahed N, et al. An electrochemical DNA biosensor developed on a nanocomposite platform of gold and poly(propyleneimine) dendrimer. Sensors (Basel). 2008;8(11):6791–809. https://doi.org/10.3390/s8116791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Some of this work was performed at the former Fatih University as a part of the work presented in FK’s master thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Senel.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senel, M., Dervisevic, M. & Kokkokoğlu, F. Electrochemical DNA biosensors for label-free breast cancer gene marker detection. Anal Bioanal Chem 411, 2925–2935 (2019). https://doi.org/10.1007/s00216-019-01739-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01739-9

Keywords

Navigation