Skip to main content
Log in

A label-free photoelectrochemical DNA biosensor using a quantum dot–dendrimer nanocomposite

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel label-free photoelectrochemical biosensing method for highly sensitive and specific detection of DNA hybridization using a CdS quantum dot (QD)–dendrimer nanocomposite is presented. A molecular beacon (MB) was assembled on a gold-nanoparticle-modified indium tin oxide electrode surface. Hybridization to a complementary target DNA disrupts the stem–loop structure of the MB, which was afterward labeled with the QD–dendrimer nanocomposite. The modified indium tin oxide electrode showed a stable anodic photocurrent response at 300 mV (vs Ag/AgCl) to light excitation at 410 nm in the presence of 0.1 M ascorbic acid as an electron donor. The protocol developed integrates the specificity of an MB for molecular recognition and the advantages of gold nanoparticles for increasing the loading capacity of the MB on the electrode surface and accelerating the electron transfer. Moreover, the photocurrent was greatly enhanced because of the high loading of QDs by the dendrimer, which eliminated the surface defects of CdS QDs and prevented recombination of their photogenerated electron–hole pairs. Under the optimal conditions, a linear relationship between the increase of photocurrent and target DNA concentration was obtained in the range from 1 fM to 0.1 nM, with a detection limit of 0.5 fM. The sequence-specificity experiment showed that one or three mismatches of DNA bases could be discriminated. This photoelectrochemical method is a prospective technique for DNA hybridization detection because of its great advantages: label-free, high sensitivity and specificity, low cost, and easy fabrication. This could create a new platform for the application of CdS QD–dendrimer nanocomposites in photoelectrochemical bioanalysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lazcka O, Del Campo FJ, Munoz FX. Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron. 2007;22:1205–17.

    CAS  PubMed  Google Scholar 

  2. Palchetti I, Mascini M. Nucleic acid biosensors for environmental pollution monitoring. Analyst. 2008;133:846–54.

    CAS  PubMed  Google Scholar 

  3. Chang HX, Yuan Y, Shi NL, Guan YF. Electrochemical DNA biosensor based on conducting polyaniline nanotube array. Anal Chem. 2007;79:5111–5.

    CAS  PubMed  Google Scholar 

  4. Gore MR, Szalai VA, Ropp PA, Yang IV, Silverman JS, Thorp HH. Detection of attomole quantities [correction of quantitites] of DNA targets on gold microelectrodes by electrocatalytic nucleobase oxidation. Anal Chem. 2003;75:6586–92.

    CAS  PubMed  Google Scholar 

  5. Divsar F, Ju HX. Electrochemiluminescence detection of near single DNA molecules by using quantum dots–dendrimer nanocomposites for signal amplification. Chem Commun. 2011;47:9879–81.

    CAS  Google Scholar 

  6. Kim HY, Kane MD, Kim S, Dominguez W, Applegate BM, Savikhin S. A molecular beacon DNA microarray system for rapid detection of E. coli O157:H7 that eliminates the risk of a false negative signal. Biosens Bioelectron. 2007;22:1041–7.

    CAS  PubMed  Google Scholar 

  7. Wu ZS, Jiang JH, Fu L, Shen GL, Yu RQ. Optical detection of DNA hybridization based on fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Anal Biochem. 2006;353:22–9.

    CAS  PubMed  Google Scholar 

  8. Wang HB, Ou LJ, Huang KJ, Wen XG, Wang LL, Liu YM. A sensitive biosensing strategy for DNA detection based on graphene oxide and T7 exonuclease assisted target recycling amplification. Can J Chem. 2013;91:1266–71.

    CAS  Google Scholar 

  9. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science. 1997;277:1078–81.

    CAS  PubMed  Google Scholar 

  10. Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc. 1998;120:1959–64.

    CAS  Google Scholar 

  11. Ananthanawat C, Vilaivan T, Mekboonsonglarp W, Hoven VP. Thiolated pyrrolidinyl peptide nucleic acids for the detection of DNA hybridization using surface plasmon resonance. Biosens Bioelectron. 2009;24:3544–9.

    CAS  PubMed  Google Scholar 

  12. Liu S, Li C, Cheng J, Zhou Y. Selective photoelectrochemical detection of DNA with high-affinity metallointercalator and tin oxide nanoparticle electrode. Anal Chem. 2006;78:4722–6.

    CAS  PubMed  Google Scholar 

  13. Wang GL, Yu PP, Xu JJ, Chen HY. A label-free photoelectrochemical immunosensor based on water-soluble Cds quantum dots. J Phys Chem C. 2009;113:11142–8.

    CAS  Google Scholar 

  14. Ikeda A, Nakasu M, Ogasawara S, Nakanishi H, Nakamura M, Kikuchi JI. Photoelectrochemical sensor with porphyrin-deposited electrodes for determination of nucleotides in water. Org Lett. 2009;11:1163–6.

    CAS  PubMed  Google Scholar 

  15. Lu W, Wang G, Jin Y, Yao X, Hu JQ, Li JH. Label-free photoelectrochemical strategy for hairpin DNA hybridization detection on titanium dioxide electrode. Appl Phys Lett. 2006;89:263902.

    Google Scholar 

  16. Lu W, Jin Y, Wang G, Chen D, Li JH. Enhanced photoelectrochemical method for linear DNA hybridization detection using Au-nanopaticle labeled DNA as probe onto titanium dioxide electrode. Biosens Bioelectron. 2008;23:1534–9.

    CAS  PubMed  Google Scholar 

  17. Tokudome H, Yamada Y, Sonezaki S, Ishikawa H, Bekki M, Kanehira K, et al. Photoelectrochemical deoxyribonucleic acid sensing on a nanostructured TiO2 electrode. Appl Phys Lett. 2005;87:213901.

    Google Scholar 

  18. Willner I, Patolsky F, Wasserman J. Photoelectrochemistry with controlled DNA-cross-linked CdS nanoparticle arrays. Angew Chem. 2001;113:1913–6.

    Google Scholar 

  19. Wang GL, Xu JJ, Chen HY. Progress in the studies of photoelectrochemical sensors. Sci China Ser B. 2009;52:1789–800.

    CAS  Google Scholar 

  20. Wang B, Dong YX, Wang YL, Cao JT, Ma SH, Liu YM. Quenching effect of exciton energy transfer from CdS:Mn to Au nanoparticles: a highly efficient photoelectrochemical strategy for microRNA-21 detection. Sensors Actuators B Chem. 2018;254:159–65.

    CAS  Google Scholar 

  21. Fan GC, Zhu H, Du D, Zhang J, Zhu JJ, Lin Y. Enhanced photoelectrochemical immunosensing platform based on CdSeTe@CdS:Mn core-shell quantum dots sensitized TiO2 amplified by CuS nanocrystals conjugated signal antibodies. Anal Chem. 2016;88:3392–9.

    CAS  PubMed  Google Scholar 

  22. Dong YX, Cao JT, Wang B, Ma SH, Liu YM. Exciton−plasmon interactions between CdS@g-C3N4 heterojunction and Au@Ag nanoparticles coupled with DNAase-triggered signal amplification: Toward highly sensitive photoelectrochemical bioanalysis of microRNA. ACS Sustain Chem Eng. 2017;5:10840–8.

    CAS  Google Scholar 

  23. Dastan D, Panahi SL, Chaure NB. Characterization of titania thin films grown by dip-coating technique. J Mater Sci Mater Electron. 2016;27:12291–6.

    CAS  Google Scholar 

  24. Dastan D, Panahi SL, Yengntiwar AP, Banpurkar AG. Morphological and electrical studies of titania powder and films grown by aqueous solution method. Adv Sci Lett. 2016;22:950–3.

    Google Scholar 

  25. Panahi SL, Dastan D, Chaure NB. Characterization of zirconia nanoparticles grown by sol-gel method. Adv Sci Lett. 2016;22:941–4.

    Google Scholar 

  26. Nasr C, Hotchandani S, Kim WY, Schmehl RH, Kamat PV. Photoelectrochemistry of composite semiconductor thin films. Photosensitization of SnO2/CdS coupled nanocrystallites with a ruthenium polypyridyl complex. J Phys Chem B. 1997;101:7480–7.

    CAS  Google Scholar 

  27. Shen Q, Ayuzawa Y, Katayama K, Sawada T, Toyoda T. Separation of ultrafast photoexcited electron and hole dynamics in CdSe quantum dots adsorbed onto nanostructured TiO2 films. Appl Phys Lett. 2010;97:263113.

    Google Scholar 

  28. Zhao WW, Yu PP, Xu JJ, Chen HY. Ultrasensitive photoelectrochemical biosensing based on biocatalytic deposition. Electrochem Commun. 2011;13:495–7.

    CAS  Google Scholar 

  29. Sheeney-Haj-Ichia L, Pogorelova S, Gofer Y, Willner I. Enhanced photoelectrochemistry in CdS/Au nanoparticle bilayers. Adv Funct Mater. 2004;14:416–24.

    CAS  Google Scholar 

  30. Sheeney-Haj-Ichia L, Basnar B, Willner I. Efficient generation of photocurrents by using CdS/carbon nanotube assemblies on electrodes. Angew Chem Int Ed. 2005;44:78–83.

    CAS  Google Scholar 

  31. Zhang X, Li S, Jin X, Zhang S. A new photoelectrochemical aptasensor for the detection of thrombin based on functionalized graphene and CdSe nanoparticles multilayers. Chem Commun. 2011;47:4929–31.

    CAS  Google Scholar 

  32. Kongkanand A, Domínguez RM, Kamat PV. Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons. Nano Lett. 2007;7:676–80.

    CAS  PubMed  Google Scholar 

  33. Gill R, Zayats M, Willner I. Semiconductor quantum dots for bioanalysis. Angew Chem Int Ed. 2008;47:7602–25.

    CAS  Google Scholar 

  34. Tu WW, Dong Y, Lei JP, Ju HX. Low-potential photoelectrochemical biosensing using porphyrin-functionalized TiO2 nanoparticles. Anal Chem. 2010;82:8711–6.

    CAS  PubMed  Google Scholar 

  35. Dastan D, Chaure N, Kartha M. Surfactants assisted solvothermal derived titania nanoparticles: synthesis and simulation. J Mater Sci Mater Electron. 2017;28:7784–96.

    CAS  Google Scholar 

  36. Dastan D. Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol-gel. Appl Phys A Mater Sci Process. 2017;123:1–13.

    CAS  Google Scholar 

  37. Dastan D, Banpurkar A. Solution processable sol-gel derived titania gate dielectric for organic field effect transistors. J Mater Sci Mater Electron. 2016;28:3851–9.

    Google Scholar 

  38. Qian Z, Bai HJ, Wang GL, Xu JJ, Chen HY. A photoelectrochemical sensor based on CdS-polyamidoamine nanocomposite film for cell capture and detection. Biosens Bioelectron. 2010;25:2045–50.

    CAS  PubMed  Google Scholar 

  39. Grabar KC, Freeman RG, Hommer MB, Natan MJ. Preparation and characterization of Au colloid monolayers. Anal Chem. 1995;67:735–43.

    CAS  Google Scholar 

  40. Priyam A, Chatterjee A, Das SK, Saha A. Synthesis and spectral studies of cysteine-capped CdS nanoparticles. Res Chem Intermed. 2005;31:691–702.

    CAS  Google Scholar 

  41. Jin YJ, Luo YJ, Li GP, Li J, Wang YF, Yang RQ, et al. Application of photoluminescent CdS/PAMAM nanocomposites in fingerprint detection. Forensic Sci Int. 2008;179:34–8.

    CAS  PubMed  Google Scholar 

  42. Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc. 1993;115:8706–15.

    CAS  Google Scholar 

  43. Yu WW, Qu LH, Guo WZ, Peng XG. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater. 2003;15:2854–60.

    CAS  Google Scholar 

  44. Zhang CX, O’Brien S, Balogh L. Comparison and stability of CdSe nanocrystals covered with amphiphilic poly(amidoamine) dendrimers. J Phys Chem B. 2002;106:10316–21.

    CAS  Google Scholar 

  45. Qingwen L, Guoan L, Jun F, Dawen C, Qi O. Photoelectrochemistry as a novel strategy for DNA hybridization detection. Analyst. 2000;125:1908–10.

    Google Scholar 

  46. Street RA, Qi P, Lujan R, Wong WS. Reflectivity of disordered silicon nanowires. Appl Phys Lett. 2008;93:163109.

    Google Scholar 

  47. Gao Z, Tansil NC. An ultrasensitive photoelectrochemical nucleic acid biosensor. Nucleic Acids Res. 2005;33:e123.

    PubMed  PubMed Central  Google Scholar 

  48. Zhang X, Zhao Y, Zhou H, Qu B. A new strategy for photoelectrochemical DNA biosensor using chemiluminescence reaction as light source. Biosens Bioelectron. 2011;26:2737–41.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faten Divsar.

Ethics declarations

Conflict of interest

The author declare that she has no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 393 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Divsar, F. A label-free photoelectrochemical DNA biosensor using a quantum dot–dendrimer nanocomposite. Anal Bioanal Chem 411, 6867–6875 (2019). https://doi.org/10.1007/s00216-019-02058-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02058-9

Keywords

Navigation