Skip to main content
Log in

Carbon dots-decorated multiwalled carbon nanotubes nanocomposites as a high-performance electrochemical sensor for detection of H2O2 in living cells

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel enzyme-free hydrogen peroxide sensor composed of carbon dots (CDs) and multi-walled carbon nanotubes (MWCNTs) was prepared. It was found that the carbon dots-decorated multi-walled carbon nanotubes nanocomposites (CDs/MWCNTs) modified glassy carbon (GC) electrode (CDs/MWCNTs/GCE) exhibited a significant synergistic electrocatalytic activity towards hydrogen peroxide reduction as compared to carbon dots or multi-walled carbon nanotubes alone, and the CDs/MWCNTs/GCE has shown a low detection limit as well as excellent stability, selectivity, and reproducibility. These remarkable analytical advantages enable the practical application of CDs/MWCNTs/GCE for the real-time tracking of hydrogen peroxide (H2O2) released from human cervical cancer cells with satisfactory results. The enhanced electrochemical activity can be assigned to the edge plane-like defective sites and lattice oxygen in the CDs/MWCNTs nanocomposites due to the small amount of decoration of carbon dots on the multi-walled carbon nanotubes. Based on a facile preparation method and with good electrochemical properties, the CDs/MWCNTs nanocomposites represent a new class of carbon electrode for electrochemical sensor applications.

CDs/MWCNTs exhibited good electrocatalytic activity and stability to H2O2 reduction and can be used for real-time detection of H2O2 released from living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ping J, Wu J, Fan K, Ying Y. An amperometric sensor based on prussian blue and poly(O-Phenylenediamine) modified glassy carbon electrode for the determination of hydrogen peroxide in beverages. Food Chem. 2011;126:2005–9.

    Article  CAS  Google Scholar 

  2. Woo Y-A, Lim H-R, Kim H-J, Chung H. Determination of hydrogen peroxide concentration in antiseptic solutions using portable near-infrared system. J Pharm Biomed Anal. 2003;33:1049–57.

    Article  CAS  Google Scholar 

  3. Lu X, Zhou J, Lu W, Liu Q, Li J. Carbon nanofiber-based composites for the construction of mediator-free biosensors. Biosens Bioelectron. 2008;23:1236–43.

    Article  CAS  Google Scholar 

  4. Shu X, Chen Y, Yuan H, Gao S, Xiao D. H2O2 sensor based on the room-temperature phosphorescence of nano TiO2/SiO2 composite. Anal Chem. 2007;79:3695–702.

    Article  CAS  Google Scholar 

  5. Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed. 2010;49:6726–44.

    Article  CAS  Google Scholar 

  6. Sies H. Biochemistry of oxidative stress. Angew Chem Int Ed Engl. 1986;25:1058–71.

    Article  Google Scholar 

  7. Klassen NV, Marchington D, McGowan HCE. H2O2 determination by the I3- method and by KMnO4 titration. Anal Chem. 1994;66:2921–5.

    Article  CAS  Google Scholar 

  8. Steinberg S. High-performance liquid chromatography method for determination of hydrogen peroxide in aqueous solution and application to simulated Martian soil and related materials. Environ Monit Assess. 2013;185:3749–57.

    Article  CAS  Google Scholar 

  9. Matos RC, Coelho EO, Souza CF, Guedes FA, Matos MAC. Peroxidase immobilized on amberlite IRA-743 Resin for on-Line spectrophotometric detection of hydrogen peroxide in rainwater. Talanta. 2006;69:1208–14.

    Article  CAS  Google Scholar 

  10. Wang T, Zhu H, Zhuo J, Zhu Z, Papakonstantinou P, Lubarsky G, et al. Biosensor based on ultrasmall MoS2 nanoparticles for electrochemical detection of H2O2 released by cells at the nanomolar level. Anal Chem. 2013;85:10289–95.

    Article  CAS  Google Scholar 

  11. Wang L, Zhu H, Song Y, Liu L, He Z, Wan L, et al. Architecture of poly(O-Phenylenediamine)–Ag nanoparticle composites for a hydrogen peroxide sensor. Electrochim Acta. 2012;60:314–20.

    Article  CAS  Google Scholar 

  12. Bui M-PN, Pham X-H, Han KN, Li CA, Kim YS, Seong GH. Electrocatalytic reduction of hydrogen peroxide by silver particles patterned on single-walled carbon nanotubes. Sensors and Actuators B. 2010;150:436–41.

    Article  CAS  Google Scholar 

  13. Wang L, Wang E. A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode. Electrochem Commun. 2004;6:225–9.

    Article  CAS  Google Scholar 

  14. Prakash P, Agarwal R, Singh N, Chauhan RP, Agrawal VV, Biradar AM. Fabrication of enzyme based electrochemical H2O2 biosensor using TiO2 as a matrix. Sens Lett. 2015;13:219–22.

    Article  Google Scholar 

  15. Ernst A, Makowski O, Kowalewska B, Miecznikowski K, Kulesza PJ. Hybrid bioelectrocatalyst for hydrogen peroxide reduction: immobilization of enzyme within organic–inorganic film of structured prussian blue and PEDOT. Bioelectrochemistry. 2007;71:23–8.

    Article  CAS  Google Scholar 

  16. Shoji E, Freund MS. Potentiometric sensors based on the inductive effect on the pka of poly(aniline): a nonenzymatic glucose sensor. J Am Chem Soc. 2001;123:3383–4.

    Article  CAS  Google Scholar 

  17. Li X, Zhu Q, Tong S, Wang W, Song W. Self-assembled microstructure of carbon nanotubes for enzymeless glucose sensor. Sensors and Actuators B. 2009;136:444–50.

    Article  CAS  Google Scholar 

  18. Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I. “Plugging into enzymes”: nanowiring of redox enzymes by a gold nanoparticle. Science. 2003;299:1877–81.

    Article  CAS  Google Scholar 

  19. Zhang Y, Sun Y, Liu Z, Xu F, Cui K, Shi Y, et al. Au nanocages for highly sensitive and selective detection of H2O2. J Electroanal Chem. 2011;656:23–8.

    Article  CAS  Google Scholar 

  20. Chen H, Zhang Z, Cai D, Zhang S, Zhang B, Tang J, et al. A hydrogen peroxide sensor based on Ag nanoparticles electrodeposited on natural nano-structure attapulgite modified glassy carbon electrode. Talanta. 2011;86:266–70.

    Article  CAS  Google Scholar 

  21. Zhang L, Li H, Ni Y, Li J, Liao K, Zhao G. Porous cuprous oxide microcubes for non-enzymatic amperometric hydrogen peroxide and glucose sensing. Electrochem Commun. 2009;11:812–5.

    Article  CAS  Google Scholar 

  22. Chang Q, Deng K, Zhu L, Jiang G, Yu C, Tang H. Determination of hydrogen peroxide with the aid of peroxidase-like Fe3O4 magnetic nanoparticles as the catalyst. Microchim Acta. 2009;165:299–305.

    Article  CAS  Google Scholar 

  23. Zhang X, Liu D, Yu B, You T. A novel nonenzymatic hydrogen peroxide sensor based on electrospun nitrogen-doped carbon nanoparticles-embedded carbon nanofibers film. Sensors and Actuators B. 2016;224:103–9.

    Article  CAS  Google Scholar 

  24. Lin W-J, Liao C-S, Jhang J-H, Tsai Y-C. Graphene modified basal and edge plane pyrolytic graphite electrodes for electrocatalytic oxidation of hydrogen peroxide and Β-nicotinamide adenine dinucleotide. Electrochem Commun. 2009;11:2153–6.

    Article  CAS  Google Scholar 

  25. Yang J, Liu D-J, Kariuki NN, Chen LX. Aligned carbon nanotubes with built-in FeN4 active sites for electrocatalytic reduction of oxygen. Chem Commun. 2008; 329–31.

  26. Zhou M, Guo J, Guo LP, Bai J. Electrochemical sensing platform based on the highly ordered mesoporous carbon-fullerene system. Anal Chem. 2008;80:4642–50.

    Article  CAS  Google Scholar 

  27. Banks CE, Davies TJ, Wildgoose GG, Compton RG. Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chem Commun. 2005; 829–41.

  28. Shao Y, Sui J, Yin G, Gao Y. Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell. Appl Catal B. 2008;79:89–99.

    Article  CAS  Google Scholar 

  29. Gong K, Du F, Xia Z, Durstock M, Dai L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science. 2009;323:760–4.

    Article  CAS  Google Scholar 

  30. Shao Y, Zhang S, Engelhard MH, Li G, Shao G, Wang Y, et al. Nitrogen-doped graphene and its electrochemical applications. J Mater Chem. 2010;20:7491–6.

    Article  CAS  Google Scholar 

  31. Shen J, Zhu Y, Yang X, Li C. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun. 2012;48:3686–99.

    Article  CAS  Google Scholar 

  32. Li H, Kang Z, Liu Y, Lee S-T. Carbon nanodots: synthesis, properties and applications. J Mater Chem. 2012;22:24230–53.

    Article  CAS  Google Scholar 

  33. Li Y, Zhao Y, Cheng H, Hu Y, Shi G, Dai L, et al. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J Am Chem Soc. 2012;134:15–8.

    Article  CAS  Google Scholar 

  34. Jahanbakhshi M, Habibi B. A novel and facile synthesis of carbon quantum dots via salep hydrothermal treatment as the silver nanoparticles support: application to electroanalytical determination of H2O2 in fetal bovine serum. Biosens Bioelectron. 2016;81:143–50.

    Article  CAS  Google Scholar 

  35. Razmi H, Mohammad-Rezaei R. Graphene quantum dots as a new substrate for immobilization and direct electrochemistry of glucose oxidase: application to sensitive glucose determination. Biosens Bioelectron. 2013;41:498–504.

    Article  CAS  Google Scholar 

  36. Kang SH, Choi SH, Kang MS, Kim JY, Kim HS, Hyeon T, et al. Nanorod-based dye-sensitized solar cells with improved charge collection efficiency. Adv Mater. 2008;20:54–8.

    Article  CAS  Google Scholar 

  37. Teng X, Ma C, Ge C, Yan M, Yang J, Zhang Y, et al. Green synthesis of nitrogen-doped carbon dots from konjac flour with “Off-on” fluorescence by Fe3+ and L-lysine for bioimaging. J Mater Chem B. 2014;2:4631–9.

    Article  CAS  Google Scholar 

  38. Jia N, Wang Z, Yang G, Shen H, Zhu L. Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine. Electrochem Commun. 2007;9:233–8.

    Article  CAS  Google Scholar 

  39. Cañete-Rosales P, Ortega V, Álvarez-Lueje A, Bollo S, González M, Ansón A, et al. Influence of size and oxidative treatments of multi-walled carbon nanotubes on their electrocatalytic properties. Electrochim Acta. 2012;62:163–71.

    Article  Google Scholar 

  40. Seo PW, Cho SP, Hong SH, Hong SC. The influence of lattice oxygen in titania on selective catalytic reduction in the low temperature region. Appl Catal A. 2010;380:21–7.

    Article  CAS  Google Scholar 

  41. Zhou X, Tian Z, Li J, Ruan H, Ma Y, Yang Z, et al. Synergistically enhanced activity of graphene quantum dot/multi-walled carbon nanotube composites as metal-free catalysts for oxygen reduction reaction. Nanoscale. 2014;6:2603–7.

    Article  CAS  Google Scholar 

  42. Sun H, Liu Z, Chen S, Quan X. The role of lattice oxygen on the activity and selectivity of the OMS-2 catalyst for the total oxidation of toluene. Chem Eng J. 2015;270:58–65.

    Article  CAS  Google Scholar 

  43. Liu S-Q, Ju H-X. Renewable reagentless hydrogen peroxide sensor based on direct electron transfer of horseradish peroxidase immobilized on colloidal gold-modified electrode. Anal Biochem. 2002;307:110–6.

    Article  CAS  Google Scholar 

  44. Zhang Y, Yuan R, Chai Y, Xiang Y, Hong C, Ran X. An amperometric hydrogen peroxide biosensor based on the immobilization of HRP on multi-walled carbon nanotubes/electro-copolymerized nano-Pt-poly(Neutral Red) composite membrane. Biochem Eng J. 2010;51:102–9.

    Article  CAS  Google Scholar 

  45. Guo S, Wen D, Dong S, Wang E. Gold nanowire assembling architecture for H2O2 electrochemical sensor. Talanta. 2009;77:1510–7.

    Article  CAS  Google Scholar 

  46. Liu M, Liu R, Chen W. Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens Bioelectron. 2013;45:206–12.

    Article  CAS  Google Scholar 

  47. Dong S, Xi J, Wu Y, Liu H, Fu C, Liu H, et al. High loading MnO2 nanowires on graphene paper: facile electrochemical synthesis and use as flexible electrode for tracking hydrogen peroxide secretion in live cells. Anal Chim Acta. 2015;853:200–6.

    Article  CAS  Google Scholar 

  48. Tan SJ, Jana NR, Gao S, Patra PK, Ying JY. Surface-ligand-dependent cellular interaction, subcellular localization, and cytotoxicity of polymer-coated quantum dots. Chem Mater. 2010;22:2239–47.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Foundation for Excellent Young Scholar of China (21322510), Science and Technology Innovation Foundation of Jilin Province for Talents Cultivation (Grants 20150519014JH), National Science Foundation for Young Scholar of China (21505130), and Youth Foundation of Jilin Province (20140520082JH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiue Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Human and animal rights and informed consent

Informed consent was obtained from all individual participants included in the study. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 582 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, J., Sun, C. & Jiang, X. Carbon dots-decorated multiwalled carbon nanotubes nanocomposites as a high-performance electrochemical sensor for detection of H2O2 in living cells. Anal Bioanal Chem 408, 4705–4714 (2016). https://doi.org/10.1007/s00216-016-9554-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9554-4

Keywords

Navigation