Skip to main content

Advertisement

Log in

Fluorescent biosensor for the detection of hyaluronidase: intensity-based ratiometric sensing and fluorescence lifetime-based sensing using a long lifetime azadioxatriangulenium (ADOTA) fluorophore

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this report, we have designed a rapid and sensitive, intensity-based ratiometric sensing as well as lifetime-based sensing probe for the detection of hyaluronidase activity. Hyaluronidase expression is known to be upregulated in various pathological conditions. We have developed a fluorescent probe by heavy labeling of hyaluronic acid with a new orange/red-emitting organic azadioxatriangulenium (ADOTA) fluorophore, which exhibits a long fluorescence lifetime (∼20 ns). The ADOTA fluorophore in water has a peak fluorescence lifetime of ∼20 ns and emission spectra centered at 560 nm. The heavily ADOTA-labeled hyaluronic acid (HA-ADOTA) shows a red shift in the peak emission wavelength (605 nm), a weak fluorescence signal, and a shorter fluorescence lifetime (∼4 ns) due to efficient self-quenching and formation of aggregates. In the presence of hyaluronidase, the brightness and fluorescence lifetime of the sample increase with a blue shift in the peak emission to its original wavelength at 560 nm. The ratio of the fluorescence intensity of the HA-ADOTA probe at 560 and 605 nm can be used as the sensing method for the detection of hyaluronidase. The cleavage of the hyaluronic acid macromolecule reduces the energy migration between ADOTA molecules, as well as the degree of self-quenching and aggregation. This probe can be efficiently used for both intensity-based ratiometric sensing as well as fluorescence lifetime-based sensing of hyaluronidase. The proposed method makes it a rapid and sensitive assay, useful for analyzing levels of hyaluronidase in relevant clinical samples like urine or plasma.

Scheme showing cleavage of HA-ADOTA probe by hyaluronidase and the change in the emission spectrum of HA-ADOTA probe before and after cleavage by hyaluronidase

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Stern R. Hyaluronidases in cancer biology. Semin Cancer Biol. 2008;18(4):275–80.

    Article  CAS  Google Scholar 

  2. Chao KL, Muthukumar L, Herzberg O. Structure of human hyaluronidase-1, a hyaluronan hydrolyzing enzyme involved in tumor growth and angiogenesis. Biochemistry (N Y). 2007;46(23):6911–20.

    Article  CAS  Google Scholar 

  3. Bollet AJ, Bonner WM, Nance JL. The presence of hyaluronidase in various mammalian tissues. J Biol Chem. 1963;238:3522–7.

    CAS  Google Scholar 

  4. Franzmann EJ, Schroeder GL, Goodwin WJ, Weed DT, Fisher P, Lokeshwar VB. Expression of tumor markers hyaluronic acid and hyaluronidase (HYAL1) in head and neck tumors. Int J Cancer. 2003;106(3):438–45.

    Article  CAS  Google Scholar 

  5. Liu D, Pearlman E, Diaconu E, Guo K, Mori H, Haqqi T, et al. Expression of hyaluronidase by tumor cells induces angiogenesis in vivo. Proc Natl Acad Sci U S A. 1996;93(15):7832–7.

    Article  CAS  Google Scholar 

  6. Lokeshwar VB, Estrella V, Lopez L, Kramer M, Gomez P, Soloway MS, et al. HYAL1-v1, an alternatively spliced variant of HYAL1 hyaluronidase: a negative regulator of bladder cancer. Cancer Res. 2006;66(23):11219–27.

    Article  CAS  Google Scholar 

  7. Chain E, Duthie E. Identity of hyaluronidase and spreading factor. Br J Exp Pathol. 1940;21(6):324.

    CAS  Google Scholar 

  8. Hobby GL, Dawson MH, Meyer K, Chaffee E. The relationship between spreading factor and hyaluronidase. J Exp Med. 1941;73(1):109–23.

    Article  CAS  Google Scholar 

  9. McCUTCHEON M, COMAN DR. Spreading factor in human carcinomas. Cancer Res. 1947;7(6):379–82.

    CAS  Google Scholar 

  10. Turley EA, Noble PW, Bourguignon LY. Signaling properties of hyaluronan receptors. J Biol Chem. 2002;277(7):4589–92.

    Article  CAS  Google Scholar 

  11. Girish K, Kemparaju K. The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci. 2007;80(21):1921–43.

    Article  CAS  Google Scholar 

  12. Stern R. Hyaluronan catabolism: a new metabolic pathway. Eur J Cell Biol. 2004;83(7):317–25.

    Article  CAS  Google Scholar 

  13. Stern R. Hyaluronan metabolism: a major paradox in cancer biology. Pathol Biol. 2005;53(7):372–82.

    Article  CAS  Google Scholar 

  14. Stern R, Asari AA, Sugahara KN. Hyaluronan fragments: an information-rich system. Eur J Cell Biol. 2006;85(8):699–715.

    Article  CAS  Google Scholar 

  15. Lokeshwar VB, Rubinowicz D, Schroeder GL, Forgacs E, Minna JD, Block NL, et al. Stromal and epithelial expression of tumor markers hyaluronic acid and HYAL1 hyaluronidase in prostate cancer. J Biol Chem. 2001;276(15):11922–32.

    Article  CAS  Google Scholar 

  16. DORFMAN A, OTT ML. A turbidimetric method for the assay of hyaluronidase. J Biol Chem. 1948;172(2):367–75.

    CAS  Google Scholar 

  17. Knudsen P, Koefoed J. Viscometric determination of hyaluronidase activity in biological fluids. Scand J Clin Lab Invest. 1961;13(4):673–82.

    Article  CAS  Google Scholar 

  18. Stern M, Stern R. An ELISA-like assay for hyaluronidase and hyaluronidase inhibitors. Matrix. 1992;12(5):397–403.

    Article  CAS  Google Scholar 

  19. Pham HT, Block NL, Lokeshwar VB. Tumor-derived hyaluronidase: a diagnostic urine marker for high-grade bladder cancer. Cancer Res. 1997;57(4):778–83.

    CAS  Google Scholar 

  20. Bonner W, Cantey EY. Colorimetric method for determination of serum hyaluronidase activity. Clin Chim Acta. 1966;13(6):746–52.

    Article  CAS  Google Scholar 

  21. Steiner B, Cruce D. A zymographic assay for detection of hyaluronidase activity on polyacrylamide gels and its application to enzymatic activity found in bacteria. Anal Biochem. 1992;200(2):405–10.

    Article  CAS  Google Scholar 

  22. Podyma KA, Yamagata S, Sakata K, Yamagata T. Difference of hyaluronidase produced by human tumor cell lines with hyaluronidase present in human serum as revealed by zymography. Biochem Biophys Res Commun. 1997;241(2):446–52.

    Article  CAS  Google Scholar 

  23. Cheng D, Han W, Yang K, Song Y, Jiang M, Song E. One-step facile synthesis of hyaluronic acid functionalized fluorescent gold nanoprobes sensitive to hyaluronidase in urine specimen from bladder cancer patients. Talanta. 2014;130:408–14.

    Article  CAS  Google Scholar 

  24. Chib R, Raut S, Fudala R, Chang A, Mummert M, Rich R, et al. FRET based ratio-metric sensing of hyaluronidase in synthetic urine as a biomarker for bladder and prostate cancer. Curr Pharm Biotechnol. 2013;14(4):470–4.

    Article  CAS  Google Scholar 

  25. Fudala R, Mummert ME, Gryczynski Z, Rich R, Borejdo J, Gryczynski I. Lifetime-based sensing of the hyaluronidase using fluorescein labeled hyaluronic acid. J Photochem Photobiol B Biol. 2012;106:69–73.

    Article  CAS  Google Scholar 

  26. Huang Y, Song C, Li H, Zhang R, Jiang R, Liu X, et al. Cationic conjugated polymer/hyaluronan-doxorubicin complex for sensitive fluorescence detection of hyaluronidase and tumor-targeting drug delivery and imaging. ACS Appl Mater Interfaces. 2015;7(38):21529–37.

    Article  CAS  Google Scholar 

  27. Liu S, Zhao N, Cheng Z, Liu H. Amino-functionalized green fluorescent carbon dots as surface energy transfer biosensors for hyaluronidase. Nanoscale. 2015;7(15):6836–42.

    Article  CAS  Google Scholar 

  28. Murai T, Kawashima H. A simple assay for hyaluronidase activity using fluorescence polarization. Biochem Biophys Res Commun. 2008;376(3):620–4.

    Article  CAS  Google Scholar 

  29. Wang Z, Li X, Song Y, Li L, Shi W, Ma H. An upconversion luminescence nanoprobe for the ultrasensitive detection of hyaluronidase. Anal Chem. 2015;87(11):5816–23.

    Article  CAS  Google Scholar 

  30. Rich RM, Mummert M, Foldes-Papp Z, Gryczynski Z, Borejdo J, Gryczynski I, et al. Detection of hyaluronidase activity using fluorescein labeled hyaluronic acid and fluorescence correlation spectroscopy. J Photochem Photobiol B Biol. 2012;116:7–12.

    Article  CAS  Google Scholar 

  31. Fudala R, Mummert ME, Gryczynski Z, Gryczynski I. Fluorescence detection of hyaluronidase. J Photochem Photobiol B Biol. 2011;104(3):473–7.

    Article  CAS  Google Scholar 

  32. Hu Q, Zeng F, Wu S. A ratiometric fluorescent probe for hyaluronidase detection via hyaluronan-induced formation of red-light emitting excimers. Biosens Bioelectron. 2016;79:776–83.

    Article  CAS  Google Scholar 

  33. Song Y, Wang Z, Li L, Shi W, Li X, Ma H. Gold nanoparticles functionalized with cresyl violet and porphyrin via hyaluronic acid for targeted cell imaging and phototherapy. Chem Commun. 2014;50(99):15696–8.

    Article  CAS  Google Scholar 

  34. Wang W, Cameron AG, Ke S. Developing fluorescent hyaluronan analogs for hyaluronan studies. Molecules. 2012;17(2):1520–34.

    Article  CAS  Google Scholar 

  35. Zhang L, Mummert ME. Development of a fluorescent substrate to measure hyaluronidase activity. Anal Biochem. 2008;379(1):80–5.

    Article  CAS  Google Scholar 

  36. Xie H, Zeng F, Wu S. Ratiometric fluorescent biosensor for hyaluronidase with hyaluronan as both nanoparticle scaffold and substrate for enzymatic reaction. Biomacromolecules. 2014;15(9):3383–9.

    Article  CAS  Google Scholar 

  37. Huang C, Chiang C, Lin Z, Lee K, Chang H. Bioconjugated gold nanodots and nanoparticles for protein assays based on photoluminescence quenching. Anal Chem. 2008;80(5):1497–504.

    Article  CAS  Google Scholar 

  38. Chib R, Raut S, Shah S, Grobelna B, Akopova I, Rich R, et al. Steady state and time resolved fluorescence studies of azadioxatriangulenium (ADOTA) fluorophore in silica and PVA thin films. Dyes Pigments. 2015;117:16–23.

    Article  CAS  Google Scholar 

  39. Folmar M, Shtoyko T, Fudala R, Akopova I, Gryczynski Z, Raut S, et al. Metal enhanced fluorescence of Me-ADOTA Cl dye by silver triangular nanoprisms on a gold film. Chem Phys Lett. 2012;531:126–31.

    Article  CAS  Google Scholar 

  40. Laursen BW, Sørensen TJ. Synthesis of super stable triangulenium dye. J Org Chem. 2009;74(8):3183–5.

    Article  CAS  Google Scholar 

  41. Maliwal BP, Fudala R, Raut S, Kokate R, Sørensen TJ, Laursen BW, et al. Long-lived bright red emitting azaoxa-triangulenium fluorophores. Plos one. 2013;8(5):0063043.

    Article  Google Scholar 

  42. Shtoyko T, Raut S, Rich RM, Sronce RJ, Fudala R, Mason RN, et al. Preparation of plasmonic platforms of silver wires on gold mirrors and their application to surface enhanced fluorescence. ACS Appl Mater Interfaces. 2014;6(21):18780–7.

    Article  CAS  Google Scholar 

  43. Sørensen TJ, Laursen BW, Luchowski R, Shtoyko T, Akopova I, Gryczynski Z, et al. Enhanced fluorescence emission of Me-ADOTA by self-assembled silver nanoparticles on a gold film. Chem Phys Lett. 2009;476(1):46–50.

    Article  Google Scholar 

  44. Sørensen TJ, Thyrhaug E, Szabelski M, Luchowski R, Gryczynski I, Gryczynski Z, et al. Azadioxatriangulenium: a long fluorescence lifetime fluorophore for large biomolecule binding assay. Methods Appl Fluoresc. 2013;1(2):025001.

    Article  Google Scholar 

  45. Raut SL, Rich R, Shtoyko T, Bora I, Laursen BW, Sørensen TJ, et al. Sandwich type plasmonic platform for MEF using silver fractals. Nanoscale. 2015;7(42):17729–34.

    Article  CAS  Google Scholar 

  46. Bogh SA, Bora I, Rosenberg M, Thyrhaug E, Laursen BW, Sørensen TJ. Azadioxatriangulenium: exploring the effect of a 20 ns fluorescence lifetime in fluorescence anisotropy measurements. Methods Appl Fluoresc. 2015;3(4):045001.

    Article  Google Scholar 

  47. Laursen BW, Krebs FC. Synthesis, structure, and properties of azatriangulenium salts. Chem-A Eur J. 2001;7(8):1773–83.

    Article  CAS  Google Scholar 

  48. Bora I, Bogh SA, Santella M, Rosenberg M, Sørensen TJ, Laursen BW. Azadioxatriangulenium: synthesis and photophysical properties of reactive dyes for bioconjugation. Eur J Organ Chem. 2015:6351–6358.

  49. Deng Y, Feng X, Zhou M, Qian Y, Yu H, Qiu X. Investigation of aggregation and assembly of alkali lignin using iodine as a probe. Biomacromolecules. 2011;12(4):1116–25.

    Article  CAS  Google Scholar 

  50. Guo Z, Park S, Yoon J, Shin I. Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem Soc Rev. 2014;43(1):16–29.

    Article  Google Scholar 

  51. Ajayaghosh A, Carol P, Sreejith S. A ratiometric fluorescence probe for selective visual sensing of Zn2. J Am Chem Soc. 2005;127(43):14962–3.

    Article  CAS  Google Scholar 

  52. Fan J, Hu M, Zhan P, Peng X. Energy transfer cassettes based on organic fluorophores: construction and applications in ratiometric sensing. Chem Soc Rev. 2013;42(1):29–43.

    Article  CAS  Google Scholar 

  53. Niu L, Guan Y, Chen Y, Wu L, Tung C, Yang Q. BODIPY-based ratiometric fluorescent sensor for highly selective detection of glutathione over cysteine and homocysteine. J Am Chem Soc. 2012;134(46):18928–31.

    Article  CAS  Google Scholar 

  54. Lokeshwar VB, Lokeshwar BL, Pham HT, Block NL. Association of elevated levels of hyaluronidase, a matrix-degrading enzyme, with prostate cancer progression. Cancer Res. 1996;56(3):651–7.

    CAS  Google Scholar 

  55. Kuppusamy U, Das N. Inhibitory effects of flavonoids on several venom hyaluronidases. Experientia. 1991;47(11–12):1196–200.

    Article  CAS  Google Scholar 

  56. Tung J, Mark GE, Hollis GF. A microplate assay for hyaluronidase and hyaluronidase inhibitors. Anal Biochem. 1994;223(1):149–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by UNTHSC intramural grant RI6120 (R.F.), Sigma Xi grants in aid of research G20141015656984 (R.C.), UNTHSC pre-doctoral bridge grant RI6171 (R.C.), NIH grant R01EB12003 (Z.G.), and NSF grant CBET-1264608 (I.G.). We would like to thank Dr. Andras Lacko and Dr. Nirupama Sabnis for providing us the DU-145 cell line.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rahul Chib or Rafal Fudala.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 391 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chib, R., Mummert, M., Bora, I. et al. Fluorescent biosensor for the detection of hyaluronidase: intensity-based ratiometric sensing and fluorescence lifetime-based sensing using a long lifetime azadioxatriangulenium (ADOTA) fluorophore. Anal Bioanal Chem 408, 3811–3821 (2016). https://doi.org/10.1007/s00216-016-9472-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9472-5

Keywords

Navigation