Skip to main content

Advertisement

Log in

A hyaluronic acid fluorescent hydrogel based on fluorescence resonance energy transfer for sensitive detection of hyaluronidase

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Due to its important role in tumor development and treatment, hyaluronidase (HAase) has been widely investigated in vitro and in vivo. However, such investigation was limited by the absence of sensitive and in situ detection methods. Herein, a hyaluronic acid (HA) hydrogel based on the fluorescence resonance energy transfer (FRET) effect was constructed for the detection of HAase. FITC and AuNPs were covalently coupled with two HA derivatives respectively to form a fluorescent donor-acceptor pair. In the presence of HAase, the hydrogel established by cross-linking of HA derivatives was hydrolyzed specifically. The FRET effect in the hydrogel disappeared and the fluorescence intensity increased proportionally with the changes in the concentration of the HAase. Experiments proved that the HAase sensing system had a wide response range (0.5–100 U/mL), good anti-interference, and excellent biocompatibility. When the hydrogel was used for 3D culture of lung cancer cells, in situ fluorescent response could be achieved.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kolliopoulos C, Bounias D, Bouga H, Kyriakopoulou D, Stavropoulos M, Vynios DH. Hyaluronidases and their inhibitors in the serum of colorectal carcinoma patients. J Pharm Biomed Anal. 2013;83:299–304.

    CAS  PubMed  Google Scholar 

  2. Lokeshwar V, Rubinowicz D. Hyaluronic acid and hyaluronidase: molecular markers associated with prostate cancer biology and detection. Prostate Cancer Prostatic Dis. 1999;2:S21–S.

    Google Scholar 

  3. Hautmann SH, Lokeshwar VB, Schroeder GL, Civantos F, Duncan RC, Gnann R, et al. Elevated tissue expression of hyaluronic acid and hyaluronidase validates the HA-HAase urine test for bladder cancer. J Urol. 2001;165(6):2068–74.

    CAS  PubMed  Google Scholar 

  4. Liu R, Xiao W, Hu C, Xie R, Gao HL. Theranostic size-reducible and no donor conjugated gold nanocluster fabricated hyaluronic acid nanoparticle with optimal size for combinational treatment of breast cancer and lung metastasis. J Control Release. 2018;278:127–39.

    CAS  PubMed  Google Scholar 

  5. Franzmann EJ, Schroeder GL, Goodwin WJ, Weed DT, Fisher P, Lokeshwar VB. Expression of tumor markers hyaluronic acid and hyaluronidase (HYAL1) in head and neck tumors. Int J Cancer. 2003;106(3):438–45.

    CAS  PubMed  Google Scholar 

  6. Chib R, Mummert M, Bora I, Laursen BW, Shah S, Pendry R, et al. Fluorescent biosensor for the detection of hyaluronidase: intensity-based ratiometric sensing and fluorescence lifetime-based sensing using a long lifetime azadioxatriangulenium (ADOTA) fluorophore. Anal Bioanal Chem. 2016;408(14):3811–21.

    CAS  PubMed  Google Scholar 

  7. Singh M, Mukundan S, Jaramillo M, Oesterreich S, Sant S. Three-dimensional breast cancer models mimic hallmarks of size-induced tumor progression. Cancer Res. 2016;76(13):3732–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Seliktar D. Designing cell-compatible hydrogels for biomedical applications. Science. 2012;336(6085):1124–8.

    CAS  PubMed  Google Scholar 

  9. Tang YD, Huang BX, Dong YQ, Wang WL, Zheng X, Zhou W, et al. Three-dimensional prostate tumor model based on a hyaluronic acid-alginate hydrogel for evaluation of anti-cancer drug efficacy. J Biomater Sci Polym Ed. 2017;28(14):1603–16.

    CAS  PubMed  Google Scholar 

  10. Taubenberger AV, Bray LJ, Haller B, Shaposhnykov A, Binner M, Freudenberg U, et al. 3D extracellular matrix interactions modulate tumour cell growth, invasion and angiogenesis in engineered tumour microenvironments. Acta Biomater. 2016;36:73–85.

    CAS  PubMed  Google Scholar 

  11. David L, Dulong V, Le Cerf D, Chauzy C, Norris V, Delpech B, et al. Reticulated hyaluronan hydrogels: a model for examining cancer cell invasion in 3D. Matrix Biol. 2004;23(3):183–93.

    CAS  PubMed  Google Scholar 

  12. Wasteson A. Properties of fractionated chondroitin sulphate from ox nasal septa. Biochem J. 1971;122(4):477–&.

    Google Scholar 

  13. Diferrante N. Turbidimetric measurement of acid mucopolysaccharides and hyaluronidase activity. J Biol Chem. 1956;220(1):303–6.

    CAS  Google Scholar 

  14. Nossier AI, Eissa S, Ismail MF, Hamdy MA, Azzazy HME. Direct detection of hyaluronidase in urine using cationic gold nanoparticles: a potential diagnostic test for bladder cancer. Biosens Bioelectron. 2014;54:7–14.

    CAS  PubMed  Google Scholar 

  15. Magalhaes MR, da Silva NJ, Ulhoa CJ. A hyaluronidase from Potamotrygon motoro (freshwater stingrays) venom: isolation and characterization. Toxicon. 2008;51(6):1060–7.

    CAS  PubMed  Google Scholar 

  16. Bailey LC, Levine NA. Optimization of the usp assay for hyaluronidase. J Pharm Biomed Anal. 1993;11(4–5):285–92.

    CAS  PubMed  Google Scholar 

  17. Xie HF, Zeng F, Wu SZ. Ratiometric fluorescent biosensor for hyaluronidase with hyaluronan as both nanoparticle scaffold and substrate for enzymatic reaction. Biomacromolecules. 2014;15(9):3383–9.

    CAS  PubMed  Google Scholar 

  18. Liu SY, Zhao N, Cheng Z, Liu HG. Amino-functionalized green fluorescent carbon dots as surface energy transfer biosensors for hyaluronidase. Nanoscale. 2015;7(15):6836–42.

    CAS  PubMed  Google Scholar 

  19. Chen M, Yin H, Bai P, Miao P, Deng X, Xu Y, et al. ABC transporters affect the elimination and toxicity of CdTe quantum dots in liver and kidney cells. Toxicol Appl Pharmacol. 2016;303:11–20.

    CAS  PubMed  Google Scholar 

  20. Tian J, Hu J, Liu G, Yin H, Chen M, Miao P, et al. Altered gene expression of ABC transporters, nuclear receptors and oxidative stress signaling in zebrafish embryos exposed to CdTe quantum dots. Environ Pollut. 2019;244:588–99.

    CAS  PubMed  Google Scholar 

  21. Luo Y, Kirker KR, Prestwich GD. Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J Control Release. 2000;69(1):169–84.

    CAS  PubMed  Google Scholar 

  22. Jia XQ, Colombo G, Padera R, Langer R, Kohane DS. Prolongation of sciatic nerve blockade by in situ cross-linked hyaluronic acid. Biomaterials. 2004;25(19):4797–804.

    CAS  PubMed  Google Scholar 

  23. Su HC, Ma Q, Shang K, Liu T, Yin HS, Ai SY. Gold nanoparticles as colorimetric sensor: a case study on E. coli O157:H7 as a model for Gram-negative bacteria. Sens Actuators B Chemical. 2012;161(1):298–303.

    CAS  Google Scholar 

  24. Ma L, Gao WJ, Han X, Qu FL, Xia L, Kong RM. A label-free and fluorescence turn-on assay for sensitive detection of hyaluronidase based on hyaluronan-induced perylene self-assembly. NJCh. 2019;43(8):3383–9.

    CAS  Google Scholar 

  25. Liu W, Ding F, Wang Y, Lu Z, Zou P, Wang X, et al. A dual-readout nanosensor based on biomass-based C-dots and chitosan@AuNPs with hyaluronic acid for determination of hyaluronidase. Luminescence. 2019.

  26. Ge M, Bai P, Chen M, Tian J, Hu J, Zhi X, et al. Utilizing hyaluronic acid as a versatile platform for fluorescence resonance energy transfer-based glucose sensing. Anal Bioanal Chem. 2018;410(9):2413–21.

    CAS  PubMed  Google Scholar 

  27. Liang F, Pan T, Sevick-Muraca EM. Measurements of FRET in a glucose-sensitive affinity system with frequency-domain lifetime spectroscopy. Photochem Photobiol. 2005;81(6):1386–94.

    CAS  PubMed  Google Scholar 

  28. Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24(24):4337–51.

    CAS  PubMed  Google Scholar 

  29. Wu D, Shi XG, Zhao FL, Chilengue STF, Deng LD, Dong AJ, et al. An injectable and tumor-specific responsive hydrogel with tissue-adhesive and nanomedicine-releasing abilities for precise locoregional chemotherapy. Acta Biomater. 2019;96:123–36.

    CAS  PubMed  Google Scholar 

  30. Ge J, Cai R, Yang L, Zhang LL, Jiang Y, Yang Y, et al. Core-shell HA-AuNPs@SiNPs nanoprobe for sensitive fluorescence hyaluronidase detection and cell imaging. ACS Sustain Chem Eng. 2018;6(12):16555–62.

    CAS  Google Scholar 

  31. Yang WQ, Ni JC, Luo F, Weng W, Wei QH, Lin ZY, et al. Cationic carbon dots for modification-free detection of hyaluronidase via an electrostatic-controlled ratiometric fluorescence assay. AnaCh. 2017;89(16):8384–90.

    CAS  Google Scholar 

  32. An LL, Liu LB, Wang S. Cationic conjugated polymers for homogeneous and sensitive fluorescence detection of hyaluronidase. Sci China Ser B Chem. 2009;52(6):827–32.

    CAS  Google Scholar 

  33. Lee H, Lee K, Kim IK, Park TG. Synthesis, characterization, and in vivo diagnostic applications of hyaluronic acid immobilized gold nanoprobes. Biomaterials. 2008;29(35):4709–18.

    CAS  PubMed  Google Scholar 

  34. Gu W, Yan YH, Zhang CL, Ding CP, Xian YZ. One-step synthesis of water-soluble MoS2 quantum dots via a hydrothermal method as a fluorescent probe for hyaluronidase detection. ACS Appl Mater Interfaces. 2016;8(18):11272–9.

    CAS  PubMed  Google Scholar 

  35. Wei H, Li B, Li J, Wang E, Dong S. Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chem Commun. 2007;36:3735–7.

    Google Scholar 

  36. Pem B, Pongrac IM, Ulm L, Pavicic I, Vrcek V, Jurasin DD, et al. Toxicity and safety study of silver and gold nanoparticles functionalized with cysteine and glutathione. Beilstein J Nanotechnol. 2019;10:1802–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Suo A, Xu W, Wang Y, Sun T, Ji L, Qian J. Dual-degradable and injectable hyaluronic acid hydrogel mimicking extracellular matrix for 3D culture of breast cancer MCF-7 cells. Carbohydr Polym. 2019;211:336–48.

    CAS  PubMed  Google Scholar 

  38. Aref AR, Huang RYJ, Yu WM, Chua KN, Sun W, Tu TY, et al. Screening therapeutic EMT blocking agents in a three-dimensional microenvironment. Integr Biol. 2013;5(2):381–9.

    CAS  Google Scholar 

  39. Bourguignon LYW, Singleton PA, Diedrich F, Stern R, Gilad E. CD44 interaction with Na+-H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. J Biol Chem. 2004;279(26):26991–7007.

    CAS  PubMed  Google Scholar 

  40. Berger JT, Voynow JA, Peters KW, Rose MC. Respiratory carcinoma cell lines - MUC genes and glycoconjugates. Am J Respir Cell Mol Biol. 1999;20(3):500–10.

    CAS  PubMed  Google Scholar 

  41. Jacobson A, Rahmanian M, Rubin K, Heldin P. Expression of hyaluronan synthase 2 or hyaluronidase 1 differentially affect the growth rate of transplantable colon carcinoma cell tumors. Int J Cancer. 2002;102(3):212–9.

    CAS  PubMed  Google Scholar 

  42. Lokeshwar VB, Rubinowicz D, Schroeder GL, Forgacs E, Minna JD, Block NL, et al. Stromal and epithelial expression of tumor markers hyaluronic acid and HYAL1 hyaluronidase in prostate cancer. J Biol Chem. 2001;276(15):11922–32.

    CAS  PubMed  Google Scholar 

  43. Lokeshwar VB, Obek C, Pham HT, Wei D, Young MJ, Duncan RC, et al. Urinary hyaluronic acid and hyaluronidase: markers for bladder cancer detection and evaluation of grade. J Urol. 2000;163(1):348–56.

    CAS  PubMed  Google Scholar 

  44. Zhang L, Cui H. HAase-sensitive dual-targeting irinotecan liposomes enhance the therapeutic efficacy of lung cancer in animals. Nanotheranostics. 2018;2(3):280–94.

    PubMed  PubMed Central  Google Scholar 

  45. Pandit AH, Mazumdar N, Ahmad S. Periodate oxidized hyaluronic acid-based hydrogel scaffolds for tissue engineering applications. Int J Biol Macromol. 2019;137:853–69.

    CAS  PubMed  Google Scholar 

Download references

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was funded and supported by grants from National Natural Science Foundation of China (No. 21876198), National Science and Technology Major Project of China (2017ZX10302301-003), National Key R&D Program of China (2017YFF0108600), and Natural Science Foundation of Shandong Province (ZR2019QB021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huancai Yin or Jian Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 451 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, M., Sun, J., Chen, M. et al. A hyaluronic acid fluorescent hydrogel based on fluorescence resonance energy transfer for sensitive detection of hyaluronidase. Anal Bioanal Chem 412, 1915–1923 (2020). https://doi.org/10.1007/s00216-020-02443-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02443-9

Keywords

Navigation