Skip to main content
Log in

Molecular characterization of phytoplankton dissolved organic matter (DOM) and sulfur components using high resolution Orbitrap mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Orbitrap high resolution mass spectrometry (HRMS) with electrospray ionization in both positive and negative polarity was conducted on Suwannee River fulvic acid (SRFA), Pony Lake fulvic acid (PLFA) standards, and dissolved organic matter (DOM) released by freshwater phytoplankton (Scenedesmus obliquus, Euglena mutabilis, and Euglena gracilis). Three-dimensional van Krevelen diagrams expressing various oxygenation states of sulfur molecules and abundance plots of sulfur-containing species were constructed. Orbitrap HRMS analysis of SRFA found a high density of peaks in the lignin region (77 %) and low density of protein material (6.53 %), whereas for PLFA, 25 % of the total peaks were lignin related compared to 56 % of peaks in protein regions, comparable with other HRMS studies. Phytoplankton-derived DOM of S. obliquus, E. mutabilis, and E. gracilis was dominated by protein molecules at respective percentages of 36, 46, and 49 %, and is consistent with previous experiments examining phytoplankton-derived DOM composition. The normalized percentage of SO-containing compounds was determined among the three phytoplankton to be 56 % for Scenedesmus, 54 % for E. mutabilis, and 47 % for E. gracilis, suggesting variation between sulfur content in phytoplankton-derived DOM and differences in metal binding capacities. These results suggest the level of resolution by Orbitrap mass spectrometry is sufficient for preliminary characterization of phytoplankton DOM at an affordable cost relative to other HRMS techniques.

Euglena mutabilis-derived DOM examined using Orbitrap mass spectrometry (a) with the percentage representing various elemental compositions where blue regions are CHO, orange CHNO, grey CHOS and yellow CHNOS (b). 2D (c) and 3D (d) van Krevelen diagrams display abundant groups with similar elemental ratio properties and various oxygen states of sulfur molecules produced where SH=red, SO=green, SO2=black (d). Double bond equivalence and carbon number provide structural characteristics of sulfur compounds (e), where contour intensities range from 5-30% relative intensity

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Guéguen C, Guo L, Wang D, Tanaka N, Hung CC. Biogeochemistry. 2006;77:139–55.

    Article  Google Scholar 

  2. Tfaily MM, Hodgkins S, Podgorski DC, Chanton JP, Cooper WT. Anal Bioanal Chem. 2012;404:447–57.

    Article  CAS  Google Scholar 

  3. Ishii SKL, Boyer TH. Environ Sci Technol. 2012;46:2006–17.

    Article  CAS  Google Scholar 

  4. Kujawinski EB, Longnecker K, Blough NV, Del Vecchio R, Finlay L, et al. Geochim Cosmochim Acta. 2009;73:4384–99.

    Article  CAS  Google Scholar 

  5. Mannino A, Harvey RH. Limnol Oceanogr. 2000;45(5):775–88.

    Article  CAS  Google Scholar 

  6. Hood E, Williams MW, McKnight DM. Biogeochemistry. 2005;76:231–55.

    Article  Google Scholar 

  7. Al-Reasi H, Smith S, Wood CM. Environ Int. 2013;59:201–7.

    Article  CAS  Google Scholar 

  8. Bittar BT, Stubbins A, Vieira AHV, Mopper K. Mar Chem. 2015. doi:10.1016/j.marchem.2015.06.016.

    Google Scholar 

  9. Coble PG. Mar Chem. 1996;51:325–46.

    Article  CAS  Google Scholar 

  10. Guéguen C, Cuss CW. J Chromatogr A. 2012;1218:4188–98.

    Article  Google Scholar 

  11. Kujawinski EB, Hatcher PG, Freitas MA. Anal Chem. 2002;74:413–9.

    Article  CAS  Google Scholar 

  12. Brautigam A, Schaumloffel D, Krauss GJ, Wesenberg D. Anal Bioanal Chem. 2009;395:1737–47.

    Article  Google Scholar 

  13. Dupont CL, Ahner BA. Limnol Oceanogr. 2005;50(2):508–15.

    Article  CAS  Google Scholar 

  14. Joe-Wong C, Shoenfelt E, Hauser EJ, Crompton N, Myneni SCB. Environ Sci Technol. 2012;46:9854–61.

    CAS  Google Scholar 

  15. Mangal V, Gueguen C. Anal Bioanal Chem. 2015;407(15):4305–13.

    Article  CAS  Google Scholar 

  16. Blake SL, Walker SH, Muddiman DC, Hinks D, Beck KR. J Am Soc Mass Spectrom. 2011;22:2269–75.

    Article  CAS  Google Scholar 

  17. Cortes-Francisco N, Caizach J. Molecular characterization of dissolved organic matter through a desalination process by high resolution mass spectrometry. Environ Sci Technol. 2013;47:9619–27.

    Article  CAS  Google Scholar 

  18. Cortes-Francisco N, Caizach J. Anal Bioanal Chem. 2015;407:2455–62.

    Article  CAS  Google Scholar 

  19. Remucal KC, Cory MR, Sander M, McNeill K. Environ Sci Technol. 2012;46:9350–9.

    Article  CAS  Google Scholar 

  20. D’Andrilli J, Foreman CM, Marshall AG, McKnight DM. Org Geochem. 2013;65:19–28.

    Article  Google Scholar 

  21. Fleurs R, Koch BP, Schmitt-Kopplin P, Witt M, Kattner G. Mar Chem. 2011;124:100–7.

    Article  Google Scholar 

  22. Hertkorn N, Frommberger M, Witt M, Koch BP, Schmitt-Kopplin P, et al. Anal Chem. 2008;80:8908–19.

    Article  CAS  Google Scholar 

  23. Koch BP, Ludwichowski KU, Kattner G, Dittmar T, Witt M. Mar Chem. 2008;111:233–41.

    Article  CAS  Google Scholar 

  24. Kim S, Kramer RW, Hatcher PG. Anal Chem. 2003;75:5336–44.

    Article  CAS  Google Scholar 

  25. Chen H, Stubbins A, Perdue EM, Green NW, Helms JR, et al. Mar Chem. 2014;164:48–59.

    Article  CAS  Google Scholar 

  26. Hertkorn N, Benner R, Frommberger M, Schmitt-Kopplin P, Witt M, et al. Geochim Cosmochim Acta. 2006;70(12):2990–3010.

    Article  CAS  Google Scholar 

  27. Koch BP, Kattner G, Witt M, Passow U. Biogeosciences. 2014;11:4173–90.

    Article  CAS  Google Scholar 

  28. Michalski A, Damocs E, Hauschild JP, Langes O, Wieghauss A, et al. Mol Cell Proteomics. 2011;10(9):M111.011015. doi:10.1074/mcp.M111.011015.

    Article  Google Scholar 

  29. Yang M, Zhou Z, Guo D. Anal Chim Acta. 2015;894:44–53.

    Article  CAS  Google Scholar 

  30. Pohlabeln AM, Dittmar T. Mar Chem. 2015;168:86–94.

    Article  CAS  Google Scholar 

  31. Wu Z, Rodgers RP, Marshall AG. Anal Chem. 2004;76:2511–6.

    Article  CAS  Google Scholar 

  32. Sudasinghe N, Dungan B, Lammers P, Albrecht K, Elliott D, et al. Fuel. 2014;119:47–56.

    Article  CAS  Google Scholar 

  33. Koren LE, Hutner SH. J Protozool 14: Supplementary 17 1967.

  34. Holguin MF, Schaub T. Algal Res. 2013;2:43–50.

    Article  Google Scholar 

  35. Sanguineti MM, Hourani N, Witt M, Sarathy M, Thomsen L, et al. Algal Res. 2015;9:227–35.

    Article  Google Scholar 

  36. Stenson AC, Marshall AG, Cooper WT. Anal Chem. 2003;75:1275–84.

    Article  CAS  Google Scholar 

  37. Koch BP, Dittmar T. Rapid Commun Mass Spectrom. 2006;20:926–32.

    Article  CAS  Google Scholar 

  38. Ohno T, Ohno PE. Anal Bioanal Chem. 2013;405:3299–06.

    Article  CAS  Google Scholar 

  39. Bai Z, Kim KH, Brown RC, Dalluge E, Hutchinson C, et al. Fuel. 2014;128:170–9.

    Article  CAS  Google Scholar 

  40. Waska H, Koschinsky A, Chancho MJR, Dittmar T. Mar Chem. 2015;173:78–92.

    Article  CAS  Google Scholar 

  41. Zhang F, Harir M, Moritz F, Zhang J, Witting M, et al. Water Res. 2014;57:280–94.

    Article  CAS  Google Scholar 

  42. Killberg-Thoreson L, Sipler RE, Bronk DA. Estuar Coasts. 2013;36:966–80.

    Article  CAS  Google Scholar 

  43. Stolpe B, Zhou Z, Guo L, Shiller AM. Mar Chem. 2014;164:25–37.

    Article  CAS  Google Scholar 

  44. Hudson N, Baker A, Reynolds D. River Res Appl. 2007;23:631–49.

    Article  Google Scholar 

  45. Thornton DCO. Eur J Phycol. 2014;49(1):20–46.

    Article  CAS  Google Scholar 

  46. Santiago-Martinez GM, Lira-Silva E, Encalada R, Pineda E, Gallardo-Perez JC, et al. J Hazard Mater. 2015;288:104–12.

    Article  CAS  Google Scholar 

  47. Kilham SS, Kreeger DA, Lynn SG, Goulden CE, Herrera L. Hydrobiologia. 1998;377:147–59.

    Article  CAS  Google Scholar 

  48. Rodriguez-Zavala JS, Garcia-Garcia JD, Ortiz-Cruz MA, Mareno-Sanchez RM. J Environ Sci Part A. 2007;42:1365–78.

    Article  CAS  Google Scholar 

  49. Lobodin VV, Nyadong L, Ruddy BM, Curtis M, Jones PR, et al. Int J Mass Spectrom. 2015;378:186–92.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support by the Natural Sciences and Engineering Research Council of Canada (NSERC). We thank Cam Winters and Noble Purification for providing the Euglena strains. Special thanks to Jeremie Parot for mass spectrometry troubleshooting and Wenjie Wu for assistance with phytoplankton maintenance and DOM filtrations. We would also like to thank the Editor and an anonymous reviewer for their constructive comments, which helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celine Guéguen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 572 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mangal, V., Stock, N.L. & Guéguen, C. Molecular characterization of phytoplankton dissolved organic matter (DOM) and sulfur components using high resolution Orbitrap mass spectrometry. Anal Bioanal Chem 408, 1891–1900 (2016). https://doi.org/10.1007/s00216-015-9295-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9295-9

Keywords

Navigation