Skip to main content
Log in

Examining concentrations and molecular weights of thiols in microorganism cultures and in Churchill River (Manitoba) using a fluorescent-labeling method coupled to asymmetrical flow field-flow fractionation

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this study, molecular weights of thiols from four laboratory cultures (Scenedesmus obliquus, Chlorella vulgaris, Euglena gracilis, and Attheya septentrionalis) and the Churchill River (Manitoba) were assessed using a fluorescent-labeling method such as monobromotrimethylammoniobimane (qBBr) and asymmetrical flow field-flow fractionation (AF4) coupled to a fluorescence detector. Concentrations of thiols in extracellular fractions ranged from 6.39 ± 3.39 to 39.2 ± 7.43 μmol g−1, and intracellular concentrations ranged from 11.5 ± 4.52 to 41.0 ± 4.1 μmol g−1. In addition, molecular weights (MW) of intracellular thiol ranged from 493 ± 24 to 946 ± 12 Da whereas extracellular thiol MWs varied from 443 ± 36 to 810 ± 174 Da. The novel method of combining AF4 to an on-line fluorometer and the incorporation of the thiol tag provided information regarding thiol concentration and composition of controlled and natural systems. Furthermore, the proposed methods allow for the simultaneous measurement of thiol and DOM MWs produced by microorganisms. By assessing characteristics of naturally produced thiols and lab-grown thiols, information regarding heavy metal complexation can be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahner BA, Price NM, Morel FMM (1994) PNAS 91:8433–8436

    Article  CAS  Google Scholar 

  2. Laglera LM, van den Berg CMG (2006) Mar Chem 101:130–140

    Article  CAS  Google Scholar 

  3. Joe-Wong C, Shoenfelt E, Hauser EJ, Crompton N, Myneni SCB (2012) Envir Sci Technol 46:9854–9861

    CAS  Google Scholar 

  4. Rao B, Simpson C, Lin H, Liang L, Gu B (2014) Talanta 119:240–247

    Article  CAS  Google Scholar 

  5. Cobbett C (2002) Annu Rev Plant Biol 53:159–82

    Article  CAS  Google Scholar 

  6. Faucheur S, Behra R, Sigg L (2005) Environ Toxicol Chem 24(7):1731–1737

    Article  Google Scholar 

  7. Pinto E, Sigaud-Kutner SCT, Leitao SAM, Okamoto KO, Morse D et al (2003) J Phycol 39:1008–18

    Article  CAS  Google Scholar 

  8. Guimaraes-Soares L, Pascoal C, Cassio F (2007) Ecotox Environ Safe 66:36–43

    Article  CAS  Google Scholar 

  9. Rea PA (2012) Physiol Plant 145:145–64

    Google Scholar 

  10. Skowronska PB (2001) Aquat Tox 52:241–9

    Article  Google Scholar 

  11. Garcia-Garcia JD, Olin-Sandoval V, Saavedra E, Girard L, Hernandez G, Moreno-Sanchez et al (2012) Biochim Biophys Acta 1820:1567–1575

    Article  CAS  Google Scholar 

  12. Malik A (2004) Environ Int 30:261–278

    Article  CAS  Google Scholar 

  13. Devars S, Hernandez R, Moreno-Sanchez R (1998) Arch Environ Contam Toxicol 34:128–135

    Article  CAS  Google Scholar 

  14. Grill E, Winnacker EL, Zenk HM (1987) Botany 84:439–443

    CAS  Google Scholar 

  15. Muhaemin M (2008) J Coast Res 12(1):41–46

    Google Scholar 

  16. Kumar C, Igbaria A, D’Autreaux B, Planson AG, Junot C et al (2011) EMBO 30:2044–2056

    Article  CAS  Google Scholar 

  17. Mannino A, Harvey RH (2000) Limnol Oceanogr 45(4):775–788

    Article  CAS  Google Scholar 

  18. Manceau A, Nagy KL (2012) Geochem et Chosmochim Act 99:206–223

    Article  CAS  Google Scholar 

  19. Skyllberg U, Bloom PB, Qian J, Lin CM, Bleam WF (2006) Environ Sci Technol 40:4174–4180

    Article  CAS  Google Scholar 

  20. Cai Y, Su J, Ma LQ (2004) Environ Pollut 129:69–78

    Article  CAS  Google Scholar 

  21. Dupont LC, Ahner AB (2005) Limnol Oceanogr 50(2):508–15

    Article  CAS  Google Scholar 

  22. Meuwly P, Thibault P, Schwan AL, Rauser WE (1995) Plant J 7(3):391–400

    Article  CAS  Google Scholar 

  23. Steffens JC, Hunt DF, Williams BG (1986) J Biol Chem 261(13):879–882

    Google Scholar 

  24. Mehra RK, Kodati VR, Abdullah R (1995) Biochem Biophys Res 215:730–736

    Article  CAS  Google Scholar 

  25. Leeuwen HP (2000) JRNC 26:487–492

    Google Scholar 

  26. Pitt JJ (2009) Clin Biochem 30:19–34

    Google Scholar 

  27. Wesenberg D, Krauss G, Schaumloffel D (2011) Int J Mass Spectrom 307:46–54

    Article  CAS  Google Scholar 

  28. Miles CJ (1983) J Chromatogr Sci 259:499–503

    Article  CAS  Google Scholar 

  29. Perminova IV, KOnstantinov AI, Kunenkov EV, Gaspar A, Schmitt-Kopplin P, Hertkorn N, Kulikova NA, Hatfield K (2009) Separation technology as a powerful tool for unfolding molecular complexity of natural organic matter and humic substances. In: Senesi N, Xing B, Huang PM (eds) Biophysico-chemical processes involving natural nonliving organic matter in environmental systems. Wiley, New Jersey, pp 487–538

    Chapter  Google Scholar 

  30. Guéguen C, Cuss C (2011) J Chromatogr 1218:4188–4198

    Article  Google Scholar 

  31. Yu Q, Szymanowski J, Myneni SCB, Fein JB (2014) Chem Geol 373:50–58

    Article  CAS  Google Scholar 

  32. Hegseth EN, Sundfjord A (2008) J Mar Chem 74:108–119

    Google Scholar 

  33. Kirk JL, St. Louis VL (2009) Environ. Sci Technol 43:2254–2261

    Article  CAS  Google Scholar 

  34. GuiryMD, Guiry GM (2014). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org/; searched on September 2014

  35. Hudson N, Baker A, Reynolds D (2007) River Res Appl 23:631–649

    Article  Google Scholar 

  36. Ishii SKL, Boyer TH (2012) Environ Sci Technol 46:2006–2017

    Article  CAS  Google Scholar 

  37. McIntrye AM, Guéguen C (2013) Chemosphere 90(2):620–626

    Article  Google Scholar 

  38. Zhang Y, Van Dijk MA, Liu M, Zhu G, Qin B (2009) Water Res 43:4685–4697

    Article  CAS  Google Scholar 

  39. Ahner BA, Morel FMM (1997) Limnol Oceanogr 40(4):658–665

    Article  Google Scholar 

  40. Gosselin M, Levasseur M, Wheeler PA, Horners RA, Booth BC (1997) Deep-Sea Res 44(8):1623–1644

    CAS  Google Scholar 

  41. Cuss CW, Guéguen C (2012) Anal Chim Acta 733:98–102

    Article  CAS  Google Scholar 

  42. Korshin GV, Benjamin MM, Li CW (1999) Water Sci Tech 40:9–16

    Article  CAS  Google Scholar 

  43. Leenheer JA, Noyes TI, Rostad CE, Davisson ML (2004) Biogeosciences 69:125–141

    CAS  Google Scholar 

  44. Pivato M, Fabrega-Prats M, Masi A (2014) Arch Biochem Biophys 560:83–99

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support by the Natural Sciences and Engineering Research Council of Canada (NSERC), Northern Science Training Program (NSTP), Churchill Northern Science Centre (CNSC), and Earth Rangers Beluga Research Program. Special thanks to Chad Cuss for his AF4 expertise and LeeAnn Fishback and her team at the Churchill Northern Science Centre, Yu Zhu, Jackie Verstege, and Dave Allcorn for their assistance in the field. Final thanks to Yong Xiang Shi, Weibin Chen, and Fan Xu for measuring DOC concentrations and aiding in qBBr troubleshooting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celine Guéguen.

Additional information

Published in the topical collection Field- and Flow-based Separations with guest editors Gaetane Lespes, Catia Contado, and Bruce Gale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mangal, V., Guéguen, C. Examining concentrations and molecular weights of thiols in microorganism cultures and in Churchill River (Manitoba) using a fluorescent-labeling method coupled to asymmetrical flow field-flow fractionation. Anal Bioanal Chem 407, 4305–4313 (2015). https://doi.org/10.1007/s00216-015-8599-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8599-0

Keywords

Navigation