Skip to main content
Log in

A new modeling strategy for third-order fast high-performance liquid chromatographic data with fluorescence detection. Quantitation of fluoroquinolones in water samples

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Matrix augmentation is regularly employed in extended multivariate curve resolution-alternating least-squares (MCR-ALS), as applied to analytical calibration based on second- and third-order data. However, this highly useful concept has almost no correspondence in parallel factor analysis (PARAFAC) of third-order data. In the present work, we propose a strategy to process third-order chromatographic data with matrix fluorescence detection, based on an Augmented PARAFAC model. The latter involves decomposition of a three-way data array augmented along the elution time mode with data for the calibration samples and for each of the test samples. A set of excitation–emission fluorescence matrices, measured at different chromatographic elution times for drinking water samples, containing three fluoroquinolones and uncalibrated interferences, were evaluated using this approach. Augmented PARAFAC exploits the second-order advantage, even in the presence of significant changes in chromatographic profiles from run to run. The obtained relative errors of prediction were ca. 10 % for ofloxacin, ciprofloxacin, and danofloxacin, with a significant enhancement in analytical figures of merit in comparison with previous reports. The results are compared with those furnished by MCR-ALS.

A new modeling strategy for third-order data

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Escandar GM, Goicoechea HC, Muñoz de la Peña A, Olivieri AC (2014) Second- and higher-order data generation and calibration: a tutorial. Anal Chim Acta 806:8–26

    Article  CAS  Google Scholar 

  2. Escandar GM, Faber NM, Goicoechea HC, Muñoz de la Peña A, Olivieri AC, Poppi RJ (2007) Second and third-order multivariate calibration: data, algorithms, and applications. Trends Anal Chem 26:752–765

    Article  CAS  Google Scholar 

  3. Booksh KS, Kowalski BR (1994) Theory of analytical chemistry. Anal Chem 66:782A–791A

    Article  CAS  Google Scholar 

  4. Gałuszka A, Migaszewski Z, Namiesnik J (2013) The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. Trends Anal Chem 50:78–84

    Article  Google Scholar 

  5. Parastar H, Radovic JR, Jalali-Heravi M, Diez S, Bayona JM, Rn T (2011) Resolution and quantification of complex mixtures of polycyclic aromatic hydrocarbons in heavy fuel oil sample by means of GC × GC-TOFMS combined to multivariate curve resolution. Anal Chem 83:9289–9297

    Article  CAS  Google Scholar 

  6. Lozano VA, Muñoz de la Peña A, Durán-Merás I, Espinosa Mansilla A, Escandar GM (2013) Four-way multivariate calibration using ultra-fast high-performance liquid chromatography with fluorescence excitation–emission detection. Application to the direct analysis of chlorophylls a and b and pheophytins a and b in olive oils. Chemom Intell Lab Syst 125:121–131

    Article  CAS  Google Scholar 

  7. Alcaráz MR, Siano GG, Culzoni MJ, Muñoz de la Peña A, Goicoechea HC (2014) Modeling four and three-way fast high-performance liquid chromatography with fluorescence detection data for quantitation of fluoroquinolones in water samples. Anal Chim Acta 809:37–46

    Article  Google Scholar 

  8. Olivieri AC, Escandar GM (2014) Practical three-way calibration. Elsevier, Waltham

    Google Scholar 

  9. Bortolato SA, Lozano VA, Muñoz de la Peña A, Olivieri AC (2014) Novel augmented parallel factor model for four-way calibration of high-performance liquid chromatography-fluorescence excitation-emission data. Chemom Intell Lab Syst. doi:10.1016/j.chemolab.2014.11.013

    Google Scholar 

  10. Bro R (1998) Multi-way analysis in the food industry. Models, algorithms, and applications. Doctoral Thesis, University of Amsterdam, The Netherlands

  11. Xia AL, Wu HL, Li SF, Zhu SH, Hu LQ, Yu RQ (2007) Alternating penalty quadrilinear decomposition algorithm for an analysis of four‐way data arrays. J Chemometr 21:133–144

    Article  CAS  Google Scholar 

  12. Fu H, Wu H, Yu Y, Yu Y, Zhang S, Nie J, Li S, Yu RQ (2011) A new third‐order calibration method with application for analysis of four‐way data arrays. J Chemometr 25:408–429

    CAS  Google Scholar 

  13. Tauler R (1995) Multivariate curve resolution applied to second order data. Chemom Intell Lab Syst 30:133–146

    Article  CAS  Google Scholar 

  14. Bloemberg TG, Gerretzen J, Lunshof A, Wehrens R, Buydens LMC (2013) Warping methods for spectroscopic and chromatographic signal alignment: a tutorial. Anal Chim Acta 781:14–32

    Article  CAS  Google Scholar 

  15. Bortolato SA, Olivieri AC (2014) Ultra performance liquid chromatography tandem mass spectrometry performance evaluation for analysis of antibiotics in natural waters. Anal Chim Acta 842:11–19

    Article  CAS  Google Scholar 

  16. Tamtam F, Mercier F, Eurin J, Chevreuil M, Le Bot B (2009) Ultra performance liquid chromatography tandem mass spectrometry performance evaluation for analysis of antibiotics in natural waters. Anal Bioanal Chem 393:1709–1718

    Article  CAS  Google Scholar 

  17. Speltini A, Sturini M, Maraschi F, Profumo A (2010) Fluoroquinolone antibiotics in environmental waters: sample preparation and determination. J Sep Sci 33:1115–1131

    CAS  Google Scholar 

  18. Parrilla Vázquez MM, Parrilla Vázquez P, Martínez Galera M, Gil García MD (2012) Determination of eight fluoroquinolones in groundwater samples with ultrasound-assisted ionic liquid dispersive liquid–liquid microextraction prior to high-performance liquid chromatography and fluorescence detection. Anal Chim Acta 748:20–27

    Article  Google Scholar 

  19. Cañada-Cañada F, Arancibia JA, Escandar GM, Ibañez GA, Espinosa Mansilla A, Muñoz de la Peña A, Olivieri AC (2009) Second-order multivariate calibration procedures applied to high-performance liquid chromatography coupled to fast-scanning fluorescence detection for the determination of fluoroquinolones. J Chromatogr A 1216:4868–4876

    Article  Google Scholar 

  20. Alcaráz MR, Vera-Candioti L, Culzoni MJ, Goicoechea HC (2014) Ultrafast quantitation of six quinolones in water samples by second order capillary electrophoresis data modeling with multivariate curve resolution-alternating least squares. Anal Bioanal Chem 406:2571–2580

    Article  Google Scholar 

  21. Bro R (1997) PARAFAC. Tutorial and applications. Chemom Intell Lab Syst 38:149–171

    Article  CAS  Google Scholar 

  22. Processing Free and Open Source Software. Available at: http://processing.org/. Accessed 10 Jan 2015

  23. Arduino Free and Open Source Software. Available at: http://arduino.cc. Accessed 10 Jan 2015

  24. MATLAB 7.6 (2008) TheMathWorks Inc., Natick, MA, USA

  25. Olivieri AC, Escandar GM, Muñoz de la Peña A (2011) Second-order and higher-order multivariate calibration methods applied to non-multilinear data using different algorithms. Trends Anal Chem 30:607–617

    Article  CAS  Google Scholar 

  26. Olivieri AC (2008) Analytical advantages of multivariate data processing. One, two, three, infinity? Anal Chem 80:5713–5720

    Article  CAS  Google Scholar 

  27. Windig W, Guilment J (1991) Interactive self-modeling mixture analysis. Anal Chem 63:1425–1432

    Article  CAS  Google Scholar 

  28. van der Voet H (1994) Comparing the predictive accuracy of models using a simple randomization test. Chemom Intell Lab Syst 25:313–323

    Article  Google Scholar 

  29. Bauza C, Ibañez GA, Tauler R, Olivieri AC (2012) Sensitivity equation for quantitative analysis with multivariate curve resolution-alternating least-squares: theoretical and experimental approach. Anal Chem 84:8697–8706

    Article  CAS  Google Scholar 

  30. Olivieri AC, Faber K (2012) New developments for the sensitivity estimation in four-way calibration with the quadrilinear parallel factor model. Anal Chem 84:186–193

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Universidad Nacional del Litoral (Projects CAI+D 2012 No. 11-11), Universidad Nacional de Rosario, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas, Project PIP 455), and ANPCyT (Agencia Nacional de Promoción Científica y Tecnológica, Projects PICT 2011-0005 and PICT 2013-0136) for financial support. M.R.A. thanks CONICET for her fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Héctor C. Goicoechea or Alejandro C. Olivieri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 136 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alcaráz, M.R., Bortolato, S.A., Goicoechea, H.C. et al. A new modeling strategy for third-order fast high-performance liquid chromatographic data with fluorescence detection. Quantitation of fluoroquinolones in water samples. Anal Bioanal Chem 407, 1999–2011 (2015). https://doi.org/10.1007/s00216-014-8442-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8442-z

Keywords

Navigation