Skip to main content
Log in

Unraveling the reaction pathways of cyclotrisilenes: a computational analysis

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Cyclotrisilenes can pursue four types of reaction pathways with unsaturated substrates: π-addition, σ-insertion, exocyclic σ-insertion, and ring-opening reactions. A computational investigation of all these reaction pathways of 1,2,3,3-tetramethyl cyclotrisilene c-Si3Me4 (I) and 1,2-bis(trimethylsilyl)-3,3-dimethyl cyclotrisilene c-Si3Me2(SiMe3)2 (II) with phenylacetylene (R1) and benzaldehyde (R2) is carried out. The reaction pathways are found to be significantly influenced by the substituents attached to the cyclotrisilene ring. Both the π-addition and the σ-insertion reactions proceed with moderate activation energy and high exoergicity, and the electronic nature of the functional group is crucial in deciding the favorable pathway. The exocyclic σ-insertion reactions are found to possess a huge energy barrier, irrespective of the steric and electronic nature of cyclotrisilenes and the substrates. While the course of the reaction and the viability of the ring-opening reaction with phenylacetylene are impacted by the nature of cyclotrisilene, the ring-opening reactions of I and II with benzaldehyde are both highly endoergic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Brook AG, Abdesaken F, Gutekunst B et al (1981) A solid silaethene: isolation and characterization. J Chem Soc Chem Commun 4:191–192. https://doi.org/10.1039/c39810000191

    Article  Google Scholar 

  2. West R, Fink MJ, Michl J (1981) Tetramesityldisilene, a stable compound containing a silicon-silicon double bond. Science 214:1343–1344. https://doi.org/10.1126/science.214.4527.1343

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Raabe G, Michl J (1985) Multiple bonding to silicon. Chem Rev 85:419–509. https://doi.org/10.1021/cr00069a005

    Article  CAS  Google Scholar 

  4. Al-Rubaiey N, Walsh R (1994) Gas-phase kinetic study of the prototype silylene addition reaction SiH2+C2H4 over the temperature range 298–595 K. An example of a third-body mediated association. J Phys Chem 98:5303–5309. https://doi.org/10.1021/j100071a021

    Article  CAS  Google Scholar 

  5. Becerra R, Walsh R (1994) Gas-phase kinetic study of the silylene addition reaction to acetylene and acetylene-d2 over the temperature range 291–613 K. Int J Chem Kinet 26:45–60. https://doi.org/10.1002/kin.550260107

    Article  CAS  Google Scholar 

  6. Erwin JW, Ring MA, O’Neal HE (1985) Mechanism and kinetics of the silane decomposition in the presence of acetylene and in the presence of olefins. Int J Chem Kinet 17:1067–1083. https://doi.org/10.1002/kin.550171004

    Article  CAS  Google Scholar 

  7. Rogers DS, Walker KL, Ring MA, O’Neal HE (1987) Silylene reactions with ethylene and butadiene: mechanism and kinetics. Organometallics 6:2313–2318. https://doi.org/10.1021/om00154a008

    Article  CAS  Google Scholar 

  8. Nagase S (1993) Theoretical study of heteroatom-containing compounds. From aromatic and polycyclic molecules to hollow cage clusters. Pure Appl Chem 65:675–682. https://doi.org/10.1351/pac199365040675

    Article  CAS  Google Scholar 

  9. Rappoport Z, Apeloig Y (1998) The chemistry of organic silicon compounds. Wiley, New York

    Book  Google Scholar 

  10. Kosa M, Karni M, Apeloig Y (2006) Trisilaallene and the relative stability of Si3H4 isomers. J Chem Theory Comput 2:956–964. https://doi.org/10.1021/ct050154a

    Article  CAS  PubMed  Google Scholar 

  11. Iwamoto T, Kabuto C, Kira M (1999) The first stable cyclotrisilene. J Am Chem Soc 121:886–887. https://doi.org/10.1021/ja983623+

    Article  CAS  Google Scholar 

  12. Ichinohe M, Matsuno T, Sekiguchi A (1999) Synthesis, characterization, and crystal structure of cyclotrisilene: a three-membered ring compound with a Si−Si double bond. Angew Chem Int Ed 38:2194–2196. https://doi.org/10.1002/(SICI)1521-3773(19990802)38:15%3c2194::AID-ANIE2194%3e3.0.CO;2-L

    Article  CAS  Google Scholar 

  13. Iwamoto T, Tamura M, Kabuto C, Kira M (2000) A stable bicyclic compound with two Si=Si double bonds. Science 290:504–506. https://doi.org/10.1126/science.290.5491.504

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Lee VY, Ichinohe M, Sekiguchi A et al (2000) the first three-membered unsaturated rings consisting of different heavier group 14 elements: 1-disilagermirene with a SiSi double bond and its isomerization to a 2-disilagermirene with a SiGe double bond. J Am Chem Soc 122:9034–9035. https://doi.org/10.1021/ja001551s

    Article  CAS  Google Scholar 

  15. Göller A, Heydt H, Clark T (1996) σ*-aromaticity of substituted 1H-phosphirenium cations and substituted silacyclopropenes†. J Org Chem 61:5840–5846. https://doi.org/10.1021/jo960387h

    Article  Google Scholar 

  16. Uchiyama K, Nagendran S, Ishida S et al (2007) Thermal and photochemical cleavage of SiSi double bond in tetrasila-1,3-diene. J Am Chem Soc 129:10638–10639. https://doi.org/10.1021/ja0741473

    Article  CAS  PubMed  Google Scholar 

  17. Lee VY, Yasuda H, Sekiguchi A (2007) Interplay of EnE‘3-nC valence isomers (E, E‘ = Si, Ge): bicyclo[1.1.0]butanes with very short bridging bonds and their isomerization to alkyl-substituted cyclopropenes. J Am Chem Soc 129:2436–2437. https://doi.org/10.1021/ja068229n

    Article  CAS  PubMed  Google Scholar 

  18. Leszczyńska K, Abersfelder K, Mix A et al (2012) Reversible base coordination to a disilene. Angew Chem Int Ed 51:6785–6788. https://doi.org/10.1002/anie.201202277

    Article  CAS  Google Scholar 

  19. Tsurusaki A, Kamiyama J, Kyushin S (2014) Tetrasilane-bridged bicyclo[4.1.0]heptasil-1(6)-ene. J Am Chem Soc 136:12896–12898. https://doi.org/10.1021/ja507279z

    Article  CAS  PubMed  Google Scholar 

  20. Ichinohe M, Igarashi M, Sanuki K, Sekiguchi A (2005) Cyclotrisilenylium ion: the persilaaromatic compound. J Am Chem Soc 127:9978–9979. https://doi.org/10.1021/ja053202+

    Article  CAS  PubMed  Google Scholar 

  21. Lee VY, Matsuno T, Ichinohe M, Sekiguchi A (2001) Interconversion of cyclotrimetallenes and dihalocyclotrimetallanes consisting of group 14 elements. Heteroat Chem 12:223–226. https://doi.org/10.1002/hc.1036

    Article  CAS  Google Scholar 

  22. Tanaka H, Inoue S, Ichinohe M et al (2011) Synthesis and striking reactivity of an isolable tetrasilyl-substituted trisilaallene. Organometallics 30:3475–3478. https://doi.org/10.1021/om200405e

    Article  CAS  Google Scholar 

  23. Tsutsui S, Sakamoto K, Kabuto C, Kira M (1998) X-ray crystallographic analysis of a 3-silacyclopropene with electronegative substituents on silicon. Organometallics 17:3819–3821. https://doi.org/10.1021/om980207p

    Article  CAS  Google Scholar 

  24. Präsang C, Scheschkewitz D (2016) Reactivity in the periphery of functionalised multiple bonds of heavier group 14 elements. Chem Soc Rev 45:900–921. https://doi.org/10.1039/C5CS00720H

    Article  PubMed  Google Scholar 

  25. Fischer RC, Power PP (2010) π-Bonding and the lone pair effect in multiple bonds involving heavier main group elements: developments in the new millennium. Chem Rev 110:3877–3923. https://doi.org/10.1021/cr100133q

    Article  CAS  PubMed  Google Scholar 

  26. Ya. Lee V, Sekiguchi A (2010) Organometallic compounds of low-coordinate Si, Ge, Sn and Pb: from phantom species to stable compounds. J. Wiley & Sons, Ltd,

  27. Pintér B, Olasz A, Petrov K, Veszprémi T (2007) Cyclotrimetallenes: bridged and distorted structures. Organometallics 26:3677–3683. https://doi.org/10.1021/om700267j

    Article  CAS  Google Scholar 

  28. Cowley MJ, Ohmori Y, Huch V et al (2013) Carbonylation of cyclotrisilenes. Angew Chem Int Ed 52:13247–13250. https://doi.org/10.1002/anie.201307450

    Article  CAS  Google Scholar 

  29. Ohmori Y, Ichinohe M, Sekiguchi A et al (2013) Functionalized cyclic disilenes via ring expansion of cyclotrisilenes with isocyanides. Organometallics 32:1591–1594. https://doi.org/10.1021/om400054u

    Article  CAS  Google Scholar 

  30. Lee VY, Gapurenko OA, Miyazaki S et al (2015) From a Si3-cyclopropene to a Si3S-bicyclo[1.1.0]butane to a Si3S-cyclopropene to a Si3S2-Bicyclo[1.1.0]butane: back-and-forth, and in-between. Angew Chem 127:14324–14328. https://doi.org/10.1002/ange.201506625

    Article  ADS  Google Scholar 

  31. Cowley MJ, Huch V, Rzepa HS, Scheschkewitz D (2013) Equilibrium between a cyclotrisilene and an isolable base adduct of a disilenyl silylene. Nat Chem 5:876–879. https://doi.org/10.1038/nchem.1751

    Article  CAS  PubMed  Google Scholar 

  32. Zhao H, Leszczyńska K, Klemmer L et al (2018) Disilenyl silylene reactivity of a cyclotrisilene. Angew Chem Int Ed 57:2445–2449. https://doi.org/10.1002/anie.201711833

    Article  CAS  Google Scholar 

  33. Lee VY, Ichinohe M, Sekiguchi A (2001) Reaction of 1-disilagermirene with benzaldehyde: an unexpected combination of cycloaddition and insertion pathways. Chem Lett 30:728–729. https://doi.org/10.1246/cl.2001.728

    Article  Google Scholar 

  34. Lee VY, Miyazaki S, Yasuda H, Sekiguchi A (2008) Isomeric metamorphosis: Si3E (E = S, Se, and Te) bicyclo[1.1.0]butane and cyclobutene. J Am Chem Soc 130:2758–2759. https://doi.org/10.1021/ja800111r

    Article  CAS  PubMed  Google Scholar 

  35. Ichinohe M, Matsuno T, Sekiguchi A (2001) Reaction of cyclotrisilene with phenylacetylene: an unusual product with a bicyclo[3.2.0]hepta-3,6-diene skeleton. Chem Commun. https://doi.org/10.1039/b008375p

    Article  Google Scholar 

  36. Yildiz CB (2020) A DFT study on the oxidation of cyclotrisilene by nitrous oxide: the σ- and π-bonds reactivity. Theor Chem Acc 139:18. https://doi.org/10.1007/s00214-019-2540-0

    Article  CAS  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, et al (2016) G16_C01. Gaussian 16, Revision C.01, Gaussian, Inc., Wallin

  38. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241. https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  39. McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z =11–18. J Chem Phys 72:5639–5648. https://doi.org/10.1063/1.438980

    Article  ADS  CAS  Google Scholar 

  40. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654. https://doi.org/10.1063/1.438955

    Article  ADS  CAS  Google Scholar 

  41. Peng C, Bernhard Schlegel H (1993) Combining synchronous transit and quasi-newton methods to find transition states. Isr J Chem 33:449–454. https://doi.org/10.1002/ijch.199300051

    Article  CAS  Google Scholar 

  42. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396. https://doi.org/10.1021/jp810292n

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Rashtriya Uchchatar Shiksha Abhiyan (RUSA) and University Grants Commission (UGC) for the financial support. AK thanks Kerala State Council for Science, Technology and Environment (KSCSTE), for a fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Major part of the work has been done by A. K. and J. J. M. J. M. wrote the main manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jomon Mathew.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1661 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kizhuvedath, A., Mallikasseri, J.J. & Mathew, J. Unraveling the reaction pathways of cyclotrisilenes: a computational analysis. Theor Chem Acc 143, 23 (2024). https://doi.org/10.1007/s00214-024-03099-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-024-03099-9

Keywords

Navigation