Skip to main content
Log in

Unveiling the exclusive stereo and site selectivity in [3+2] cycloaddition reactions of a tricyclic strained alkene with nitrile oxides from the molecular electron density theory perspective

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

The [3+2] cycloaddition reactions of formonitrile oxide and benzonitrile oxide with a tricyclic strained alkene bearing norbornene and cyclohexene double bonds have been studied from the molecular electron density theory perspective at the MPWB1K/6-311G(d,p) computational level. Electron localization function shows the absence of pseudoradical and carbenoid centers, classifying formonitrile and benzonitrile oxides as zwitterionic three-atom components, consistent with the high activation free energies of 26.0 and 28.5 kcal·mol–1, respectively, in their cycloaddition reaction with the strained alkene in CH2Cl2. These reactions follow a one-step mechanism under kinetic control and present total site selectivity, as the addition of formonitrile and benzonitrile oxides to the norbornene double bond is energetically preferred by 4.9 and 8.0 kcal·mol–1, respectively, over the cyclohexene double bond in agreement with the experiments, and complete exo-stereoselective control is predicted. The minimal global electron density transfer predicts nonpolar character, while the electron localization function topological analysis implies that the activation energy is related only to the formation of non-bonding electron density at N2 nitrogen and pseudoradical center at C3 atom of the nitrile oxides. The total electron densities less than 0.1 e and positive Laplacian of electron density at the forming C–C and C–O bond critical points of the early transition states indicate noncovalent interactions which were characterized by visualization of the AIM-RDG isosurfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Scheme 3.
Scheme 4.
Figure 1.
Figure 2.
Figure 3.
Scheme 5.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

References

  1. Flid, V. R.; Gringolts, M. L.; Shamsiev, R. S.; Finkelshtein, E. S. Russ. Chem. Rev. 2018, 87, 1169.

    Article  CAS  Google Scholar 

  2. Yip, C.; Handerson, S.; Jordan, R.; Tam, W. Org. Lett. 1999, 1, 791.

    Article  CAS  PubMed  Google Scholar 

  3. Yip, C.; Handerson, S.; Trammer, G. K.; Tam, W. J. Org. Chem. 2001, 66, 276.

    Article  CAS  PubMed  Google Scholar 

  4. Mayo, P.; Hecnar, T.; Tam, W. Tetrahedron 2001, 57, 5931.

    Article  CAS  Google Scholar 

  5. Huisgen, R. Angew. Chem., Int. Ed. Engl. 1963, 2, 565.

  6. Fraser, R. R.; Lin, Y. S. Can. J. Chem. 1968, 46, 801.

    Article  CAS  Google Scholar 

  7. Zawadzińska, K.; Ríos-Gutiérrez, M.; Kula, K.; Woliński, P.; Mirosław, B.; Krawczyk, T.; Jasiński, R. Molecules 2021, 26, 6774.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zawadzińska, K.; Kula, K. Curr. Chem. Lett. 2021, 10, 9.

    Google Scholar 

  9. Gucma, M.; Gołębiewski, W. M.; Krawczyk, M. J. Braz. Chem. Soc. 2013, 24, 805.

    CAS  Google Scholar 

  10. Gutsmiedl, K.; Wirges, C. T.; Ehmke, V.; Carell, T. Org. Lett. 2009, 11, 2405.

    Article  CAS  PubMed  Google Scholar 

  11. Truog, V. X.; Zhou, K.; Simon, G. P.; Forsythe, J. S. Marcromol. Rapid. Commun. 2015, 36, 1729.

    Article  Google Scholar 

  12. Moiola, M.; Crespi, S.; Memeo, M.; Collina, S.; Overkleeft, H.; Florea, B.; Quadrelli, P. ACS Omega 2019, 4, 7766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Darvatkar, N. B.; Wankhede, K. S.; Bhilare, S. V.; Deorukhkar, A. R.; Raut, D. G.; Vaidya, V. V.; Trivedi, G. K.; Salunkhe, M. M. J. Heterocycl. Chem. 2010, 47, 1004.

    Article  CAS  Google Scholar 

  14. Lopez, S. A.; Houk, K. N. J. Org. Chem. 2013, 78, 1778.

    Article  CAS  PubMed  Google Scholar 

  15. Donkor, B.; Opoku, E.; Aniagyei, A. Comput. Theor. Chem. 2022, 1208, 113574.

    Article  CAS  Google Scholar 

  16. Domingo, L. R. Molecules 2016, 21, 1319.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ríos-Gutiérrez, M.; Domingo, L. R. Eur. J. Org. Chem. 2019, 267.

  18. Domingo, L. R.; Acharjee, N. In Frontiers in Computational Chemistry; Ul-Haq, Z.; Wilson, A. K., Eds.; Bentham Science: Singapore, 2020, vol. 5, p. 174.

  19. Adjieufack, A. I.; Ndassa, I. M.; Mbadcam, J. K.; Ríos-Gutiérrez, M.; Domingo, L. R. J. Phys. Org. Chem. 2017, 30, e3710.

    Article  Google Scholar 

  20. Acharjee, N.; Mohammad-Salim, H. A.; Chakraborty, M. Theor. Chem. Acc. 2021, 140, 113.

    Article  CAS  Google Scholar 

  21. Domingo, L. R.; Ríos-Gutiérrez, M.; Acharjee, N. Chemistry (Basel, Switz.) 2021, 3, 74.

  22. Becke, A. D.; Edgecombe, K. E. J. Chem. Phys. 1990, 92, 5397.

    Article  CAS  Google Scholar 

  23. Silvi, B.; Savin, A. Nature 1994, 371, 683.

    Article  CAS  Google Scholar 

  24. Geerlings, P.; Proft, F. D.; Langenaeker, W. Chem. Rev. 2003, 103, 1793.

    Article  CAS  PubMed  Google Scholar 

  25. Domingo, L. R.; Ríos-Gutiérrez, M.; Pérez, P. Molecules 2016, 21, 748.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Thom, R. Stabilité Structurelle et Morphogénèse; Deuxième Edition; Intereditions: Paris, 1977.

    Google Scholar 

  27. Krokidis, X.; Noury, S.; Silvi, B.; J. Phys. Chem. A 1997, 101, 7277.

    Article  CAS  Google Scholar 

  28. Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, New York, 1994.

    Google Scholar 

  29. Bader, R. F. W.; Essén, H. J. Chem. Phys. 1984, 80, 1943.

    Google Scholar 

  30. Contreras-García, J.; Johnson, E. R.; Keinan, S.; Chaudret, R.; Piquemal, J. P.; Beratan, D. N.; Yang, W. J. Chem. Theory Comput. 2011, 7, 625.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schlegel, H. B. J. Comput. Chem. 1982, 3, 214.

    Article  CAS  Google Scholar 

  32. Schlegel, H. B. In Modern Electronic Structure Theory; Yarkony, D. R., Ed.; World Scientific Publishing: Singapore, 1995, Part I, p. 459.

  33. Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615.

    Article  CAS  PubMed  Google Scholar 

  34. Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab initio Molecular Orbital Theory; Wiley: New York, 1986.

  35. Domingo, L. R.; Ríos-Gutiérrez, M.; Pérez, P. J. Org. Chem. 2018, 83, 2182.

    Article  CAS  PubMed  Google Scholar 

  36. Fukui, K. J. Phys. Chem. 1970, 74, 4161.

    Article  CAS  Google Scholar 

  37. González, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523.

    Article  Google Scholar 

  38. González, C.; Schlegel, H. B. J. Chem. Phys. 1991, 95, 5853.

    Article  Google Scholar 

  39. Tomasi, J.; Persico, M. Chem. Rev. 1994, 94, 2027.

    Google Scholar 

  40. Simkin, B. Y.; Sheikhet, I. I. Quantum Chemical and Statistical Theory of Solutions: A Computational Approach; Ellis Horwood: London, 1995.

    Google Scholar 

  41. Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Chem. Phys. Lett. 1996, 255, 327.

    Article  CAS  Google Scholar 

  42. Cances, E.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 1997, 107, 3032.

    Article  CAS  Google Scholar 

  43. Barone, V.; Cossi, M.; Tomasi, J. J. Comput. Chem. 1998, 19, 404.

    Article  CAS  Google Scholar 

  44. Domingo, L. R. RSC Adv. 2014, 4, 32415.

    Article  CAS  Google Scholar 

  45. Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735.

    Article  CAS  Google Scholar 

  46. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.

    Article  CAS  Google Scholar 

  47. Jasiński, R. Tetrahedron Lett. 2015, 56, 532.

    Article  Google Scholar 

  48. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision D.01; Gaussian, Inc.: Wallingford, 2004.

  49. Lu, T.; Chen, F. J. Comp. Chem. 2012, 33, 580.

    Article  Google Scholar 

  50. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. J. Comput. Chem. 2004, 25, 1605.

    Article  CAS  PubMed  Google Scholar 

  51. Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graphics 1996, 14, 33.

    Article  CAS  Google Scholar 

  52. Domingo, L. R.; Chamorro, E.; Perez, P. Lett. Org. Chem. 2010, 7, 432.

    Article  CAS  Google Scholar 

  53. Ríos-Gutiérrez, M.; Domingo, L. R. Tetrahedron 2019, 75, 1961.

    Google Scholar 

  54. Domingo, L. R.; Ríos-Gutiérrez, M. Molecules 2017, 22, 750.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Domingo, L. R.; Acharjee, N. New J. Chem. 2020, 44, 13633.

    Article  CAS  Google Scholar 

  56. Domingo, L. R.; Ríos-Gutiérrez, M.; Acharjee, N. Molecules 2019, 24, 832.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Acharjee, N.; Mondal, A.; Chakraborty, M. New J. Chem. 2022, 46, 7721.

    Article  CAS  Google Scholar 

  58. Domingo, L. R.; Pérez, P. Org. Biomol. Chem. 2011, 9, 7168.

    Article  CAS  PubMed  Google Scholar 

  59. Domingo, L. R.; Kula, K.; Ríos-Gutiérrez, M. Eur. J. Org. Chem. 2020, 5938.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nivedita Acharjee.

Additional information

Published in Khimiya Geterotsiklicheskikh Soedinenii, 2023, 59(3), 145–154

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 446 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, A., Acharjee, N. Unveiling the exclusive stereo and site selectivity in [3+2] cycloaddition reactions of a tricyclic strained alkene with nitrile oxides from the molecular electron density theory perspective. Chem Heterocycl Comp 59, 145–154 (2023). https://doi.org/10.1007/s10593-023-03176-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-023-03176-0

Keywords

Navigation