Skip to main content
Log in

Spectrum simulation and decomposition with nuclear ensemble: formal derivation and application to benzene, furan and 2-phenylfuran

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A formal derivation of the nuclear-ensemble method for absorption and emission spectrum simulations is presented. It includes discussions of the main approximations employed in the method and derivations of new features aiming at further developments. Additionally, a method for spectrum decomposition is proposed and implemented. The method is designed to provide absolute contributions of different classes of states (localized, diffuse, charge-transfer, delocalized) to each spectral band. The methods for spectrum simulation and decomposition are applied to the investigation of UV absorption of benzene, furan, and 2-phenylfuran, and of fluorescence of 2-phenylfuran.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Koppel H, Domcke W, Cederbaum LS (1984) Adv Chem Phys 57:59

    Article  Google Scholar 

  2. Niu Y, Peng Q, Deng C, Gao X, Shuai Z (2010) J Phys Chem A 114:7817

    Article  CAS  Google Scholar 

  3. Tannor DJ, Heller EJ (1982) J Chem Phys 77:202

    Article  CAS  Google Scholar 

  4. Petrenko T, Neese F (2007) J Chem Phys 127:164319

    Article  Google Scholar 

  5. Barone V, Bloino J, Biczysko M, Santoro F (2009) J Chem Theory Comput 5:540

    Article  CAS  Google Scholar 

  6. Improta R, Barone V, Santoro F (2007) Angew Chem 119:409

    Article  Google Scholar 

  7. Barbatti M, Aquino AJA, Lischka H (2010) Phys Chem Chem Phys 12:4959

    Article  CAS  Google Scholar 

  8. Svoboda O, Oncak M, Slavícek P (2011) J Chem Phys 135:154301

    Article  Google Scholar 

  9. Bergsma JP, Berens PH, Wilson KR, Fredkin DR, Heller EJ (1984) J Phys Chem 88:612

    Article  CAS  Google Scholar 

  10. Saven JG, Skinner JL (1993) J Chem Phys 99:4391

    Article  CAS  Google Scholar 

  11. Kubo R (1969) Adv Chem Phys 15:101

    Article  Google Scholar 

  12. Schinke R (1995) Photodissociation dynamics: spectroscopy and fragmentation of small polyatomic molecules. Cambridge University Press, Cambridge

    Google Scholar 

  13. Crespo-Otero R, Barbatti M (2011) J Chem Phys 134:164305

    Article  Google Scholar 

  14. Barbatti M (2011) Phys Chem Chem Phys 13:4686

    Article  CAS  Google Scholar 

  15. Szalay PG, Aquino AJA, Barbatti M, Lischka H (2011) Chem Phys 380:9

    Article  CAS  Google Scholar 

  16. Greco NJ, Tor Y (2007) Tetrahedron 63:3515

    Article  CAS  Google Scholar 

  17. Sakurai JJ (1994) Modern quantum mechanics. Addison-Wesley, Massachusetts

    Google Scholar 

  18. Hilborn RC (1982) Am J Phys 50:982

    Article  CAS  Google Scholar 

  19. Lepage GP (1978) J Comput Phys 27:192

    Article  Google Scholar 

  20. Lukes V, Solc R, Barbatti M, Lischka H, Kauffmann HF (2010) J Theor Comput Chem 9:249

    Article  CAS  Google Scholar 

  21. Rikken GLJA (1995) Physica B 204:353

    Article  CAS  Google Scholar 

  22. Lampert RA, Meech SR, Metcalfe J, Phillips D, Schaap AP (1983) Chem Phys Lett 94:137

    Article  CAS  Google Scholar 

  23. Feynman RP (1982) Statistical mechanics: a set of lectures. The Benjamin/Cummings Publishing Company, London

    Google Scholar 

  24. Heller EJ (1981) Acc Chem Res 14:368

    Article  CAS  Google Scholar 

  25. Worth GA, Cederbaum LS (2004) Annu Rev Phys Chem 55:127

    Article  CAS  Google Scholar 

  26. Meister J, Schwarz WHE (1994) J Phys Chem 98:8245

    Article  CAS  Google Scholar 

  27. Casida M (1995) Time-dependent density functional response theory for molecules. In: Chong D (ed) Recent advances in density functional methods, part I. World Scientific, Singapore, p 155

    Chapter  Google Scholar 

  28. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51

    Article  CAS  Google Scholar 

  29. Peach MJG, Benfield P, Helgaker T, Tozer DJ (2008) J Chem Phys 128:044118

    Article  Google Scholar 

  30. Dunning TH (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  31. Weigend F, Häser M, Patzelt H, Ahlrichs R (1998) Chem Phys Lett 294:143

    Article  CAS  Google Scholar 

  32. Christiansen O, Koch H, Jorgensen P (1995) Chem Phys Lett 243:409

    Article  CAS  Google Scholar 

  33. Hättig C, Weigend F (2000) J Chem Phys 113:5154

    Article  Google Scholar 

  34. Hättig C, Köhn A (2002) J Chem Phys 117:6939

    Article  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, J. A., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009). Gaussian 09, revision A02. Gaussian, Inc., Wallingford

  36. Ahlrichs R, Bar M, Haser M, Horn H, Kolmel C (1989) Chem Phys Lett 162:165

    Article  CAS  Google Scholar 

  37. Barbatti M, Granucci G, Ruckenbauer M, Plasser F, Pittner J, Persico M, Lischka H (2011). NEWTON-X: a package for Newtonian dynamics close to the crossing seam. www.newtonx.org

  38. Barbatti M, Granucci G, Persico M, Ruckenbauer M, Vazdar M, Eckert-Maksic M, Lischka H (2007) J Photochem Photobiol A 190:228

    Article  CAS  Google Scholar 

  39. Wan J, Meller J, Hada M, Ehara M, Nakatsuji H (2000) J Chem Phys 113:7853

    Article  CAS  Google Scholar 

  40. Li X, Paldus J (2010) J Phys Chem A 114:8591

    Article  CAS  Google Scholar 

  41. Palmer MH, Walker IC, Ballard CC, Guest MF (1995) Chem Phys 192:111

    Article  CAS  Google Scholar 

  42. Angeli C (2009) J Comput Chem 30:1319

    Article  CAS  Google Scholar 

  43. Li Y, Wan J, Xu X (2007) J Comput Chem 28:1658

    Article  CAS  Google Scholar 

  44. Bolovinos A, Philis J, Pantos E, Tsekeris P, Andritsopoulos G (1982) J Mol Spectrosc 94:55

    Article  CAS  Google Scholar 

  45. Abu-Eittah R, Hilal R, Hamed MM (1981) Int J Quantum Chem 19:383

    Article  CAS  Google Scholar 

  46. Fally S, Carleer M, Vandaele AC (2009) J Quant Spectrosc Radiat Transf 110:766

    Article  CAS  Google Scholar 

  47. Pantos E, Philis J, Bolovinos A (1978) J Mol Spectrosc 72:36

    Article  CAS  Google Scholar 

  48. Suto M, Wang X, Shan J, Lee LC (1992) J Quant Spectrosc Radiat Transf 48:79

    Article  CAS  Google Scholar 

  49. Nascimento M, Barbosa A (2003) Quantum mechanics of many-electrons systems and the theories of chemical bond. In: Brändas EJ, Kryachko E (eds) Fundamental world of quantum chemistry, vol 1. Kluwer, Dordrecht, p 371

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the fruitful discussions with Dr. Jan Goetze. This work is a contribution to the Festschrift issue in honor of Prof. Chaer Nascimento, who was co-advisor of the doctoral work of one of the authors (MB). Nascimento’s insightful analysis of fundamental issues in quantum chemistry [49] has inspired a whole generation of computational theoretical chemists.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rachel Crespo-Otero or Mario Barbatti.

Additional information

Dedicated to Professor Marco Antonio Chaer Nascimento and published as part of the special collection of articles celebrating his 65th birthday.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 176 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crespo-Otero, R., Barbatti, M. Spectrum simulation and decomposition with nuclear ensemble: formal derivation and application to benzene, furan and 2-phenylfuran. Theor Chem Acc 131, 1237 (2012). https://doi.org/10.1007/s00214-012-1237-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1237-4

Keywords

Navigation