Skip to main content
Log in

The study of the PES and the reaction mechanism between ketene and Lithium Carbenoids and the formation of cyclopropanone

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We present a theoretical analysis of the reaction mechanisms on Lithium Carbenoids LiCH2X (X = F, Cl y Br) and ketenes at B3LYP/6-311++G(d,p) level at the IRC. We have considered the implicit solvation effects of dichloromethane using the PCM methodology. For the reaction coordinate analysis, we have used the reaction force analysis and the theoretical tools coming from conceptual DFT, NBO populations and NCI. The reaction mechanism has a barrierless step corresponding to the interaction of the carbenoid and the hydrogen of the ketene α carbon and a single kinetic step representing the bonding of the carbon carbenoid to the ketene α carbon, the activation of the reaction proceeds mostly by electrostatic interactions perpendicular to the molecular plane followed by a rotation of the ketene showing the influence of the ionic nature of the carbenoid, and the following formation of the bond with the ketene β carbon atom. All three reactions are highly exothermic leading to a decomposition product that is far lower in energy than the cyclopropanone. The tendency of the reaction barriers is LiCH2Br < LiCH2Cl < LiCH2F, indicating that the bromine carbenoid is the most reactive molecule of this group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bergstrom BD, Nickerson LA, Shaw JT, Souza LW (2021) Transition metal catalyzed insertion reactions with donor/donor carbenes. Angew Chem Int Ed 60:6864–6878. https://doi.org/10.1002/anie.202007001

    Article  CAS  Google Scholar 

  2. Boche G, Lohrenz JCW (2001) The electrophilic nature of carbenoids, nitrenoids, and oxenoids. Chem Rev 101:697–756. https://doi.org/10.1021/cr940260x

    Article  CAS  PubMed  Google Scholar 

  3. Lopes R, Royo B (2017) Iron N-heterocyclic carbenes in reduction reactions. Isr J Chem 57:1151–1159. https://doi.org/10.1002/ijch.201700055

    Article  CAS  Google Scholar 

  4. Nishimura RHV, Murie VE, Soldi RA, Lopes JLC, Clososki GC (2015) Zinc, lithium and magnesium carbenoids: chemical properties and relevant applications in organic synthesis. J Braz Chem Soc. https://doi.org/10.5935/0103-5053.20150218

    Article  Google Scholar 

  5. Gessner VH (2016) Stability and reactivity control of carbenoids: recent advances and perspectives. Chem Commun 52:12011–12023. https://doi.org/10.1039/c6cc05524a

    Article  CAS  Google Scholar 

  6. Ielo L, Castoldi L, Touqeer S, Lombino J, Roller A, Prandi C, Holzer W, Pace V (2020) Halogen-imparted reactivity in lithium carbenoid mediated homologations of imine surrogates: direct assembly of bis-trifluoromethyl-β-diketiminates and the dual role of LiCH2I. Angew Chem Int Ed 59:20852–20857. https://doi.org/10.1002/anie.202007954

    Article  CAS  Google Scholar 

  7. Monticelli S, Rui M, Castoldi L, Missere G, Pace V (2018) A practical guide for using lithium halocarbenoids in homologation reactions. Monatshefte Für Chem Chem Mon 149:1285–1291. https://doi.org/10.1007/s00706-018-2232-9

    Article  CAS  Google Scholar 

  8. Capriati V, Florio S (2010) Anatomy of long-lasting love affairs with lithium carbenoids: past and present status and future prospects. Chem Eur J 16:4152–4162. https://doi.org/10.1002/chem.200902870

    Article  CAS  PubMed  Google Scholar 

  9. Pace V (2014) Halomethyllithium carbenoids: versatile reagents for the homologation of electrophilic carbon units. Aust J Chem 67:311. https://doi.org/10.1071/CH13416

    Article  CAS  Google Scholar 

  10. Thomas E, Kasatkin AN, Whitby RJ (2006) Cyclopropyl carbenoid insertion into alkenylzirconocenes—a convergent synthesis of alkenylcyclopropanes and alkylidenecyclopropanes. Tetrahedron Lett 47:9181–9185. https://doi.org/10.1016/j.tetlet.2006.10.132

    Article  CAS  Google Scholar 

  11. Candeias NR, Paterna R, Gois PMP (2016) Homologation reaction of ketones with diazo compounds. Chem Rev 116:2937–2981. https://doi.org/10.1021/acs.chemrev.5b00381

    Article  CAS  PubMed  Google Scholar 

  12. Simmons HE, Smith RD (1958) A new synthesis of cyclopropanes from olefins. J Am Chem Soc 80:5323–5324. https://doi.org/10.1021/ja01552a080

    Article  CAS  Google Scholar 

  13. Mamuye A (2014) Chloromethyllithium. Synlett 25:2814–2815. https://doi.org/10.1055/s-0034-1379442

    Article  CAS  Google Scholar 

  14. Zhang XH, Zhang FL, Geng ZY (2010) A theoretical study of the carbenoids LiCH2X (X = Cl, Br, I) cyclopropanation reaction with ketene. J Chem Sci 122:363–369. https://doi.org/10.1007/s12039-010-0041-8

    Article  CAS  Google Scholar 

  15. Turro NJ (1969) Cyclopropanones. Acc Chem Res 2:25–32. https://doi.org/10.1021/ar50013a004

    Article  CAS  Google Scholar 

  16. Politzer P, Toro-Labbé A, Gutiérrez-Oliva S, Herrera B, Jaque P, Concha MC, Murray JS (2005) The reaction force: three key points along an intrinsic reaction coordinate. J Chem Sci 117:467–472. https://doi.org/10.1007/BF02708350

    Article  CAS  Google Scholar 

  17. Toro-Labbé A, Gutiérrez-Oliva S, Murray JS, Politzer P (2009) The reaction force and the transition region of a reaction. J Mol Model 15:707–710. https://doi.org/10.1007/s00894-008-0431-8

    Article  CAS  PubMed  Google Scholar 

  18. Proft FD, Liu S, Parr RG (1997) Chemical potential, hardness, hardness and softness kernel and local hardness in the isomorphic ensemble of density functional theory. J Chem Phys 107:3000–3006. https://doi.org/10.1063/1.474657

    Article  Google Scholar 

  19. Parr RG, Yang W (1989) Density functional theory of atoms and molecules, 1st edn. Oxford University Press, Oxford

    Google Scholar 

  20. Geerlings P, Proft FD, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874. https://doi.org/10.1021/cr990029p

    Article  CAS  PubMed  Google Scholar 

  21. Foster JP, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102:7211–7218. https://doi.org/10.1021/ja00544a007

    Article  CAS  Google Scholar 

  22. Reed AE, Weinhold F (1985) Natural localized molecular orbitals. J Chem Phys 83:1736–1740. https://doi.org/10.1063/1.449360

    Article  CAS  Google Scholar 

  23. Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal J-P, Beratan DN, Yang W (2011) NCIPLOT: a program for plotting non-covalent interaction regions. J Chem Theory Comput 7:625–632. https://doi.org/10.1021/ct100641a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Contreras-García J, Boto RA, Izquierdo-Ruiz F, Reva I, Woller T, Alonso M (2016) A benchmark for the non-covalent interaction (NCI) index or… is it really all in the geometry? Theor Chem Acc 135:242–242. https://doi.org/10.1007/s00214-016-1977-7

    Article  CAS  Google Scholar 

  25. Herrera B, Toro-Labbé A (2004) The role of the reaction force to characterize local specific interactions that activate the intramolecular proton transfers in DNA basis. J Chem Phys 121:7096. https://doi.org/10.1063/1.1792091

    Article  CAS  PubMed  Google Scholar 

  26. Herrera B, Toro-Labbé A (2007) The role of reaction force and chemical potential in characterizing the mechanism of double proton transfer in the adenine−uracil complex. J Phys Chem A 111:5921–5926. https://doi.org/10.1021/jp065951z

    Article  CAS  PubMed  Google Scholar 

  27. Geerlings P, Chamorro E, Chattaraj PK, Proft FD, Gázquez JL, Liu S, Morell C, Toro-Labbé A, Vela A, Ayers P (2020) Conceptual density functional theory: status, prospects, issues. Theor Chem Acc 139:36–36. https://doi.org/10.1007/s00214-020-2546-7

    Article  CAS  Google Scholar 

  28. Cerón ML, Echegaray E, Gutiérrez-Oliva S, Herrera B, Toro-Labbé A (2011) The reaction electronic flux in chemical reactions. Sci China Chem 54:1982–1988. https://doi.org/10.1007/s11426-011-4447-z

    Article  CAS  Google Scholar 

  29. Morell C, Tognetti V, Bignon E, Dumont E, Hernandez-Haro N, Herrera B, Grand A, Gutiérrez-Oliva S, Joubert L, Toro-Labbé A, Chermette H (2015) Insights into the chemical meanings of the reaction electronic flux. Theor Chem Acc 134:133. https://doi.org/10.1007/s00214-015-1730-7

    Article  CAS  Google Scholar 

  30. Vela A, Gazquez JL (1990) A relationship between the static dipole polarizability, the global softness, and the Fukui function. J Am Chem Soc 112:1490–1492. https://doi.org/10.1021/ja00160a029

    Article  CAS  Google Scholar 

  31. Tiznado W, Chamorro E, Contreras R, Fuentealba P (2005) Comparison among four different ways to condense the Fukui function. J Phys Chem A 109:3220–3224. https://doi.org/10.1021/jp0450787

    Article  CAS  PubMed  Google Scholar 

  32. Bulat FA, Chamorro E, Fuentealba P, Toro-Labbé A (2004) Condensation of frontier molecular orbital Fukui functions. J Phys Chem A 108:342–349. https://doi.org/10.1021/jp036416r

    Article  CAS  Google Scholar 

  33. Yang W, Parr RG, Pucci R (1984) Electron density, Kohn-Sham frontier orbitals, and Fukui functions. J Chem Phys 81:2862–2863. https://doi.org/10.1063/1.447964

    Article  CAS  Google Scholar 

  34. Morell C, Grand A, Toro-Labbé A (2005) New dual descriptor for chemical reactivity. J Phys Chem A 109:205–212. https://doi.org/10.1021/jp046577a

    Article  CAS  PubMed  Google Scholar 

  35. Morell C, Ayers PW, Grand A, Gutiérrez-Oliva S, Toro-Labbé A (2008) Rationalization of Diels-Alder reactions through the use of the dual reactivity descriptor Deltaf(r). Phys Chem Chem Phys PCCP 10:7239–7246. https://doi.org/10.1039/b810343g

    Article  CAS  PubMed  Google Scholar 

  36. Morell C, Grand A, Toro-Labbé A (2006) Theoretical support for using the Delta f(r) descriptor. Chem Phys Lett 425:342–346. https://doi.org/10.1016/j.cplett.2006.05.003

    Article  CAS  Google Scholar 

  37. Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377. https://doi.org/10.1063/1.464304

    Article  CAS  Google Scholar 

  38. Fukui K (1981) The path of chemical reactions—the IRC approach. Acc Chem Res 14:363–368. https://doi.org/10.1021/ar00072a001

    Article  CAS  Google Scholar 

  39. McQuarrie DA, Simon JD (1999) Molecular thermodynamics. University Science Books, Sausalito

    Google Scholar 

  40. Improta R, Barone V, Scalmani G, Frisch MJ (2006) A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution. J Chem Phys 125:054103. https://doi.org/10.1063/1.2222364

    Article  CAS  PubMed  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Jr., Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16

  42. Dennington II RD, Keith TA, Millam JM. GaussView 6.0.16

  43. Lu T, Chen F (2011) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  44. Williams T, Kelly C et al (2013) Gnuplot 4.6: an interactive plotting program

  45. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  46. Houk KN, Strozier RW, Hall JA (1974) Heterocumulene molecular orbitals: Ketenes, isocyanates, sulfenes, and sulfonylanines. Tetrahedron Lett 15:897–900. https://doi.org/10.1016/S0040-4039(01)82363-7

    Article  Google Scholar 

Download references

Acknowledgements

FONDECYT 1170837 awarded by BH.

Author information

Authors and Affiliations

Authors

Contributions

Daniel Villablanca did most of the calculations of the PES and figures. Sasha Gazzari did calculations of the electronic properties, dual descriptor and molecular orbitals. Barbara Herrera wrote and proofread the manuscript.

Corresponding author

Correspondence to Bárbara Herrera.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15233 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villablanca, D., Gazzari, S. & Herrera, B. The study of the PES and the reaction mechanism between ketene and Lithium Carbenoids and the formation of cyclopropanone. Theor Chem Acc 142, 32 (2023). https://doi.org/10.1007/s00214-023-02965-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-02965-2

Keywords

Navigation