Skip to main content

Advertisement

Log in

Dihydrogen attachment and dissociation reactions in Fe(H)2(H2)(PEtPh2)3: a DFT potential-energy scan

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A special class of hydrogen-binding metal complexes are complexes able to bind hydrogen molecules at one or more of their ligand positions. One of such complexes, Fe(H)2(H2)(PEtPh2)3, was characterized experimentally and theoretically in previous works. Its specific properties were related to the asymmetry of the non-hydrogen ligands. Following this reasoning, attachment and dissociation of hydrogen molecule to and from the 5-coordinated and 6-coordinated complex were investigated theoretically. Relaxed and partially constrained potential-energy scans were performed and transition-states for these processes were investigated. Non-hydrogen ligand asymmetry seems to reflect on the different barrier energies for approach to and dissociation from the two dihydrogen ligand positions. Steric and environment effects are estimated comparing behavior for partially constrained and gas-phase models. On the basis of these findings, theoretically predicted pathways for single-step dihydrogen binding and dissociation processes are established, and means for experimental verification are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

References

  1. Layzell D, Strem G, Caldwell G, Jamieson B, Pouliot M (2020) Powering the circular economy: the role of hydrogen. Circular Economy Leadership Coalition. September 27, 2020. https://circulareconomyleaders.ca/powering-the-circular-economy/

  2. Liptak BG (2009) Post-oil energy technology the world’s first solar-hydrogen demonstration power plant. CRC Press, Boca Raton

    Google Scholar 

  3. Rifkin J (2003) The hydrogen economy: the creation of the worldwide energy web and the redistribution of power on earth, 1st edn. TarcherPerigee, New York

    Google Scholar 

  4. Hoffmann P (2012) Tomorrow’s Energy: Hydrogen, Fuel Cells, and the Prospects for a Cleaner Planet, revised and expanded. The MIT Press, Cambridge

    Book  Google Scholar 

  5. International Association for Hydrogen Energy (2020) Founding Editor-in-Chief T. N. Veziroglu. Int J Hydrogen Energy Elsevier B.V@@

  6. de Miranda PEV (2019). In: de Miranda PEV (ed) Science and engineering of hydrogen-based energy technologies. Elsevier, Amsterdam, p 2019

    Google Scholar 

  7. European Comission (2014) Hydrogen Europe and Hydrogen Europe Research Joint Undertaking, Fuel Cells and Hydrogen (November 14, 2020). https://www.fch.europa.eu/page/documents

  8. Kubas GJ, Ryan RR, Swanson BI, Vergamini PJ, Wasserman HJ (1984) JACS 100(2):451–452

    Article  Google Scholar 

  9. Kubas GJ (2009) J Organomet Chem 694:2648–2653

    Article  CAS  Google Scholar 

  10. Brayshaw SK, Harrison A, McIndoe JS, Marken F, Raithby PR, Warren JE, Weller AS (2007) JACS 129:1793–1804

    Article  CAS  Google Scholar 

  11. Yang YX, Singh RK, Webley PA (2008) Adsorption 14:265–274

    Article  CAS  Google Scholar 

  12. Bushnell JE, Kemper PR, van Koppen P, Bowers MT (2001) J Phys Chem A 105:2216–2224

    Article  CAS  Google Scholar 

  13. Otsuka K, Takenaka S (2004) J Jpn Petrol Inst 47(6):377–386

    Article  CAS  Google Scholar 

  14. Weck PF, Kumar TJD, Kim E, Balakrishnan N (2007) J Chem Phys 126:094703

    Article  PubMed  Google Scholar 

  15. Durgun E, Ciraci S, Zhou W, Yildirim T (2006) arXiv:cond-mat/0609068v2 [cond-mat.other] 30 oct 2006

  16. Dong Q, Tian WQ, Chen D-L, Sun C-C (2009) Int J Hydrogen Energ 34:5444–5448

    Article  CAS  Google Scholar 

  17. Maseras F, Lledós A, Clot E, Eisenstein O (2000) Chem Rev 100:601–636

    Article  CAS  PubMed  Google Scholar 

  18. Kubas GJ (2005) Catalysis Lett 104:79–101

    Article  CAS  Google Scholar 

  19. Dutta S (2011) C R Chimie 14:1029–1053

    Article  CAS  Google Scholar 

  20. Weller AS, McIndoe JS (2007) Eur J Inorg Chem 2007:4411–4423

    Article  Google Scholar 

  21. Wiedner ES, Chambers MB, Pitman CL, Bullock RM, Miller AJM, Appel AM (2016) Chem Rev 116:8655–8692

    Article  CAS  PubMed  Google Scholar 

  22. Crabtree RH (2016) Chem Rev 116(15):8750–8769

    Article  CAS  PubMed  Google Scholar 

  23. Valencia H, Gil A, Frapper G (2015) J Phys Chem C 10:5506–5522

    Article  Google Scholar 

  24. Manadé M, Vines F, Gil A, Illas F (2018) Phys Chem Chem Phys 20(5):3819–3830

    Article  PubMed  Google Scholar 

  25. Di Liberto G, Cipriano LA, Pacchioni G (2021) J Am Chem Soc 143(48):20431–20441

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jeyakumar TC, Baskaran S, Sivasankar C (2018) J Chem Sci 130:57

    Article  Google Scholar 

  27. Van der Sluys LS, Eckert J, Eisenstein O, Hall JH, Huffman JC, Jackson SA, Koetzle TF, Kubas GJ, Vergamini PJ, Caulton KG (1990) JACS 112:4831–4841

    Article  Google Scholar 

  28. Došlić N, Gomzi V, Mališ M, Matanović I, Eckert J (2011) Inorg Chem 50(21):10740–10747

    Article  PubMed  Google Scholar 

  29. Gonzalez ME, Eckert J, Aquino AJA, Poirier B (2018) J Chem Phys 148(15):154303

    Article  PubMed  Google Scholar 

  30. Morris L, Hales JJ, Trudeau ML, Georgiev P, Embs JP, Eckert J, Kaltsoyannis N, Antonelli DM (2019) Energy Environ Sci 12:1580–1591

    Article  CAS  Google Scholar 

  31. Allendorf MD et al (2018) Energy Environ Sci 11:2784–2812

    Article  CAS  Google Scholar 

  32. Kubas GJ (2001) Metal dihydrogen and σ-bond complexes. Springer, Berlin

    Book  Google Scholar 

  33. Kubas GJ (2007) Chem Rev 107(10):4152–4205

    Article  CAS  PubMed  Google Scholar 

  34. Nguyen MC, Lee H, Ihm J (2008) Solid State Comm 147:419–422

    Article  CAS  Google Scholar 

  35. Aresta M, Giannoccaro P, Rossi M, Sacco A (1971) Inorg Chim Acta 5(1):115–118

    Article  CAS  Google Scholar 

  36. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  37. Rassolov VA, Pople JA, Ratner MA, Windus TL (1998) J Chem Phys 109:1223–1229

    Article  CAS  Google Scholar 

  38. Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) J. Comp. Chem. 22:976–984

    Article  CAS  Google Scholar 

  39. Check CE, Faust TO, Bailey JM, Wright BJ, Gilbert TM, Sunderlin LS (2001) J Phys Chem A 105(34):8111–8116

    Article  CAS  Google Scholar 

  40. Dunning TH Jr, Hay PJ (1997). In: Schaefer HF III (ed) Methods of electronic structure theory, vol 2. Plenum Press, Berlin

    Google Scholar 

  41. Hay J, Wadt WR (1985) J Chem Phys 82:284

    Article  Google Scholar 

  42. Abrecht DG, Fultz B (2012) J Phys Chem C Nanomater Interfaces 116(42):22245–22252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Devarajan D, Ess DH (2012) Inorg Chem 51:6367–6375

    Article  CAS  PubMed  Google Scholar 

  44. Barea G, Ujaque G, Maseras F, Lledos A (1996) J Mol Struc Theochem 371:59–68

    Article  CAS  Google Scholar 

  45. Schaefer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829–5835

    Article  CAS  Google Scholar 

  46. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  PubMed  Google Scholar 

  47. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093

    Article  CAS  PubMed  Google Scholar 

  48. Frisch MJ et al (2013) Gaussian 09, Revision D01. Gaussian, Inc., Wallingford

    Google Scholar 

  49. Peng C, Schlegel HB (1993) Israel J Chem 33:449–454

    Article  CAS  Google Scholar 

  50. Jansen HB, Ros P (1969) Chem Phys Lett 3:140–143

    Article  CAS  Google Scholar 

  51. Liu B, McLean AD (1973) J Chem Phys 59:4557–4558

    Article  CAS  Google Scholar 

  52. Boys SF, Bernardi F (1970) Mol Phys 19(4):553–566

    Article  CAS  Google Scholar 

  53. Simon S, Duran M, Dannenberg JJ (1996) J Chem Phys 105:11024–11031

    Article  CAS  Google Scholar 

  54. Dunning TH (2000) J Phys Chem A 104:9062

    Article  CAS  Google Scholar 

  55. Liedl KR (1998) J Chem Phys 108:3199

    Article  CAS  Google Scholar 

  56. Halkier A, Klopper W, Helgaker T, Jørgensen P, Taylor PR (1999) J Chem Phys 111:9157

    Article  CAS  Google Scholar 

  57. Asturiol D, Duran M, Salvador P (2008) J Chem Phys 128:144108

    Article  PubMed  Google Scholar 

  58. Ren J, Musyoka NM, Langmi HW, Mathe M, Liao S (2017) Int J Hydrogen Energy 42(1):289–311

    Article  CAS  Google Scholar 

  59. Rusman NAA, Dahari M (2016) Int J Hydrogen Energy 41(28):12108–12126

    Article  CAS  Google Scholar 

  60. Bérubé V, Radtke G, Dresselhaus M, Chen G (2007) Int J Energy Res 31:637–663

    Article  Google Scholar 

  61. Sandhya KS, Suresh CH (2012) Dalton Trans 41:11018–11025

    Article  CAS  PubMed  Google Scholar 

  62. Sandhya KS, Suresh CH (2014) Dalton Trans 43:12279–12287

    Article  CAS  PubMed  Google Scholar 

  63. Belkova NV, Epstein LM, Filippov OA, Shubina ES (2016) Chem Rev 116:8545–8587

    Article  CAS  PubMed  Google Scholar 

  64. Perutz RN, Procacci B (2016) Chem Rev 116:8506–8544

    Article  CAS  PubMed  Google Scholar 

  65. Runcevski T, Kapelewski MT, Torres-Gavosto RM, Tarver JD, Brown CM, Long JR (2016) Chem Commun 52:8251–8254

    Article  CAS  Google Scholar 

Download references

Acknowledgements

During this work, the Croatian National Grid (CRO-NGI) computational resources have been used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vjeran Gomzi.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomzi, V. Dihydrogen attachment and dissociation reactions in Fe(H)2(H2)(PEtPh2)3: a DFT potential-energy scan. Theor Chem Acc 141, 12 (2022). https://doi.org/10.1007/s00214-022-02870-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-022-02870-0

Keywords

Navigation