Skip to main content
Log in

Understanding the chemical bonding in sandwich complexes of transition metals coordinated to nine-membered rings: energy decomposition analysis and the donor–acceptor charge transfers

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

DFT calculations on sandwich complexes of the type (C9H9)2M and (C6N3H6)2M (M = Sc–Ni) are carried out in gas phase and tetrahydrofurane solvent (THF) using BP86 and B3LYP functionals. The nine-membered (C9H9) and (C6N3H6) ligand anions behave differently regarding their coordination to the M2+ metal cation. The computed structural and energetic parameters are weakly influenced by the inclusion of THF solvent. We report that the metal–ligand separation are sensitive to the electron-donation and electron π-backdonation as highlighted by the populations of the occupied and empty orbitals of the [(C9H9)]2 and [(C6N3H6)]2 anions and the electronic configuration of the M2+ cation. The results showed that the [(C9H9)]2 and [(C6N3H6)]2 ligands behave differently in terms of bonding, coordination mode and donation and π-backdonation properties in relationship with the metal cation radius, the number of the atoms involved in the coordination and their nature (either carbon or nitrogen atoms). The interactions are dominated by electrostatic and orbital terms each contributing approximately half into the total attractive energy. The donor–acceptor between NBOs identified within the NEDA scheme show the importance of σ → LP charge transfers contrary to those related to LP → σ* ones in line with their occupations and second perturbative energy E2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kealy TJ, Pauson PL (1951) A new type of organo-iron compound. Nature 168:1039–1040

    Article  CAS  Google Scholar 

  2. Miller SA, Tebboth JA, Tremaine JF (1952) Dicyclopentadienyliron. J Chem Soc 114:632–635

    Article  Google Scholar 

  3. Togni A (1996) Planar-chiral ferrocenes: synthetic methods and applications. Angew Chem Int Ed Engl 35:1475–1477

    Article  CAS  Google Scholar 

  4. Bandoli G, Dolmella A (2000) Ligating ability of 1,1′-bis(diphenylphosphino)ferrocene: a structural survey (1994–1998) Coord. Chem Rev 209:161–196

    CAS  Google Scholar 

  5. Siemeling U, Auch TC (2005) Chem Soc Rev 34:284

    Article  CAS  Google Scholar 

  6. Arrayas RG, Adrio J, Carretero JC (2006) Recent applications of chiral ferrocene ligands in asymmetric catalysis. Angew Chem Int Ed 45(46):7674–7715

    Article  CAS  Google Scholar 

  7. Osakada K, Sakano T, Horie M, Suzaki Y (2006) Functionalized ferrocenes: unique properties based on electronic communication between aminogroup of the ligand and Fe center. Coord Chem Rev 250:1012–1022

    Article  CAS  Google Scholar 

  8. Colacot TJ (2003) A concise update on the applications of chiral ferrocenylphosphines in homogeneous catalysis leading to organic synthesis. Am Chem Soc 103:3101–3118

    CAS  Google Scholar 

  9. Atkinson RCJ, Gibson VC, Long NJ (2004) The syntheses and catalytic applications of unsymmetrical ferroceneligands. Chem Soc Rev 33:313–328

    Article  CAS  PubMed  Google Scholar 

  10. Chandrasekhar V (2005) Inorganic and organometallic polymers. Springer, Heidelberg

    Google Scholar 

  11. Manner I (2001) Synthetic metal containing polymers. Wiley-VCH, Weinheim

    Google Scholar 

  12. Abd-el-Aziz AS, Carraher CE, Pittman CU, Sheats JE, Zeldin M (2004) Macromolecules containing metal and metal-like elements. Wiley New York 2:1–3

    CAS  Google Scholar 

  13. Herbert DE, Mayer UFJ, Manners I (2007) Strained metallocenophanes and related organometallic rings containing pi-hydrocarbon ligands and transition-metal centers. Angew Chem Int Ed 46:5060–5081

    Article  CAS  Google Scholar 

  14. Bellas V, Rehahn M (2007) Polyferrocenylsilan-basierte Polymersysteme. Angew Chem Int Ed 46:5082–5104

    Article  CAS  Google Scholar 

  15. Fischer EO, Pfab W (1952) Zur Kristallstruktur der Di-Cyclopentadienyl-Verbindungen des zweiwertigen Eisens, Kobalts und Nickels. Z Naturforsch B 7:377–379

    Article  Google Scholar 

  16. Murahashi T, Inoue R, UsuiK OS (2009) Square tetrapalladium sheet sandwich complexes: cyclononatetraenyl as a versatile face-capping ligand. J Am Chem Soc 131:9888–9889

    Article  CAS  PubMed  Google Scholar 

  17. Hosoya N, Takegami R, Suzumura JI, Yada K, Miyajima K, Mitsui M, Knickelbein MB, Yabushita S, Nakajima A (2014) Formation and electronic structures of organo-europium sandwich nanowires. J Phys Chem 118:8298–8308

    Article  CAS  Google Scholar 

  18. Day BM, Guo FS, Giblin SR, Sekiguchi A, Mansikkamaki A, Layfield RA (2018) Rare-earth cyclobutadienyl sandwich complexes: synthesis, structure and dynamic magnetic properties. Chem Eur J 24:16779–16782

    Article  CAS  PubMed  Google Scholar 

  19. Sroor FM, Vendiera L, Etiennea M (2018) Cyclooctatetraenyl calcium and strontium amido complexes. Dalton Trans 47:12587–12595

    Article  CAS  PubMed  Google Scholar 

  20. LaLancette EA, Benson RE (1965) Cyclononatetraenide: a ten-π-electron aromatic system. J Am Chem Soc 87:1941–1946

    Article  CAS  Google Scholar 

  21. Katz TJ, Garratt PJ (1963) The cyclononatetraenyl anion. J Am Chem Soc 85:2852–2853

    Article  CAS  Google Scholar 

  22. Paez-Hernandez D, Murillo-Lapez JA, Arratia-Parez R (2011) Bonding nature and electron delocalization of An(COT)2, An = Th, Pa, U. J Phys Chem A 115:8997–9003

    Article  CAS  PubMed  Google Scholar 

  23. Evans WJ (2016) Tutorial on the role of cyclopentadienyl ligands in the discovery of molecular complexes of the rare-earth and actinide metals in new oxidation states. Organometallics 35:3088–3100

    Article  CAS  Google Scholar 

  24. Edelmann A, Hrib CG, Blaurock S, Edelmann FT (2010) J Organomet Chem 695:2732–2737

    Article  CAS  Google Scholar 

  25. Demir S, Gonzalez MI, Darago LE, Evans WJ, Long JR (2017) Giant coercivity and high magnetic blocking temperatures for N23− radical-bridged dilanthanide complexes upon ligand dissociation. Nat Commun 8:2144–2152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Guo F-S, Day BM, Chen Y-C, Tong M-L, Mansikkamaki A, Layfield RA (2018) Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet. Science 362:1400–1403

    Article  CAS  PubMed  Google Scholar 

  27. Norel L, Darago LE, Le Guennic B, Chakarawet K, Gonzalez MI, Olshansky JH, Rigaut S, Long JR (2018) A terminal fluoride ligand generates axial magnetic anisotropy in dysprosium complexes. AngewChemInt Ed 57:1933–1938

    CAS  Google Scholar 

  28. LaLancette EA, Benson RE (1963) Cyclononatetraenide: an aromatic 10-π-electron system. J Am Chem Soc 85:2853

    Article  CAS  Google Scholar 

  29. Radlick P, Alford G (1969) Preparation and isolation of cis, cis, cis, cis-1,3,5,7-cyclononatetraene. J Am Chem Soc 91:6529–6530

    Article  CAS  Google Scholar 

  30. Walter MD, Wolmershaüser G, Sitzmann H (2005) Calcium, strontium, barium, and ytterbium complexes with cyclooctatetraenyl or cyclononatetraenyl ligands. J Am Chem Soc 127:17494–17503

    Article  CAS  PubMed  Google Scholar 

  31. Verkouw HT, Veldman EE, Groenenboom CJ, van Oven HO, Liefde Melter HJ (1975) Derivatives of cycloheptatrienylcyclopentadienyltitanium. J Organomet Chem 102:49–56

    Article  CAS  Google Scholar 

  32. Xemard M, Zimmer S, Cordier M, Goudy V, Ricard L, Clavaguera C, Nocton G (2018) Lanthanidocenes: synthesis, structure, and bonding of linear sandwich complexes of lanthanides. J Am Chem Soc 140:14433–14439

    Article  CAS  PubMed  Google Scholar 

  33. Joshi M, Ghanty TK (2019) Prediction of a nine-membered aromatic heterocyclic 1,4,7-triazacyclononatetraenyl anion and its sandwich complexes with Divalent Lanthanides Prediction of a nine-membered aromatic heterocyclic 1,4,7- triazacyclononatetraenyl anion and its sandwich complexes with divalent lanthanides. ChemSelect 4:9940–9946

    CAS  Google Scholar 

  34. Elango M, Subramanian V (2005) Density Functional Theoretical Investigation on Influence of Heterosubstitution and Benzannelation on the Thermal 6π Electrocyclization of cis-CyclononatetraeneJ. Phys Chem 109:11870–11877

    CAS  Google Scholar 

  35. Boruah A, Borpuzari MP, Maity R, Kar R (2018) Iron sandwiched between group 13 analogues of N-Heterocyclic carbene: a theoretical investigation. J Organomet Chem 863:54–59

    Article  CAS  Google Scholar 

  36. Arthur J, Ashe III (2009) Aromatic borataheterocycles: surrogates for cyclopentadienyl in transition-metal complexes. Organometallics 28:4236–4248

    Article  CAS  Google Scholar 

  37. Merzoug M, Zouchoune B (2014) Coordination diversity of the phenazine ligand in binuclear transition metal sandwich complexes: theoretical investigation. J Organomet Chem 770:69–78

    Article  CAS  Google Scholar 

  38. Chirik PJ (2010) Group 4 transition metal sandwich complexes: still fresh after almost 60 years. Organometallics 29:1500–1517

    Article  CAS  Google Scholar 

  39. Frazier BA, Wolczanski PT, Keresztes I, DeBeer S, Lobkovsky EB, Pierpont AW, Cundari TR (2012) Synthetic approaches to (smif)2Ti (smif = 1,3-di-(2-pyridyl)-2-azaallyl) reveal redox non-innocence and C-C bond-formation. Inorg Chem 51:8177–8186

    Article  CAS  PubMed  Google Scholar 

  40. Farah S, Bouchakri N, Zendaoui SM, Saillard JY, Zouchoune B (2010) Electronic structure of bis-azepine transition-metal complexes: a DFT investigation. J Mol Struc 953:143–150

    Article  CAS  Google Scholar 

  41. Anastassiou AG (1972) Heteronins Acc Chem Res 5:281–288

    Article  CAS  Google Scholar 

  42. Vitaku E, Smith DT, Njardarson JT (2014) Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S FDA approved pharmaceuticals. J Med Chem 57:10257–10274

    Article  CAS  PubMed  Google Scholar 

  43. Farah S, Ababsa S, Benhamada N, Zouchoune B (2010) Theoretical investigation of the coordination of dibenzazepine to transition- metal complexes: a DFT study. Polyhedron 29:2722–2730

    Article  CAS  Google Scholar 

  44. Benmachiche A, Zendaoui SM, Bouaoud SE, Zouchoune B (2012) Electronic structure and coordination chemistry of phenanthridine ligand in first-row transition metal complexes: a DFT study. Int J Quant Chem 113:985–999

    Article  CAS  Google Scholar 

  45. Naili N, Zouchoune B (2017) Structural diversity of homobinuclear transition metal complexes of the phenazine ligand: theoretical investigation. Struct Chem 29:725–739

    Article  CAS  Google Scholar 

  46. Yang Y, Guo L, Tian Z, Gong Y, Zheng H, Zheng S, Xu Z, Ge Z, Liu Z (2018) Novel and Versatile Imine-N-Heterocyclic Carbene Half-Sandwich Iridium(III) Complexes as Lysosome-Targeted Anticancer Agents. Inorg Chem 57:11087–11098

    Article  CAS  PubMed  Google Scholar 

  47. Gasser G, Ott I, Metzeler-Nolte N (2011) Organometallic anticancer compounds. J Med Chem 54:3–25

    Article  CAS  PubMed  Google Scholar 

  48. Gajera SB, Mehta JV, Thakor P, Thakkar VR, Chudasama PC, Patel JS, Patel MN (2016) Half-sandwich iridiumIII complexes with pyrazole-substituted heterocyclic frameworks and their biological applications. New J Chem 40:9968–9980

    Article  CAS  Google Scholar 

  49. Guo L, Zhang H, Tian M, Tian Z, Xu Y, Yang Y, Peng H, Liua P, Liu Z (2018) Electronic effects on reactivity and anticancer activity by half-sandwich N, N-chelated iridium(iii) complexes. New J Chem 42:16183–16192

    Article  CAS  Google Scholar 

  50. Tian Z, Yang Y, Guo L, Zhong G, Lia J, Liu Z (2018) Dual-functional cyclometalated iridium imine NHC complexes: highly potent anticancer and antimetastatic agents. Inorg Chem Front 5:3106–3112

    Article  CAS  Google Scholar 

  51. Wang H, Sun S, Wang H, King RB (2016) Binuclearcyclooctatetraene– iron carbonyl complexes: examples of fluxionality and valence tautomerism. N J Chem 40:1521–1528

    Article  CAS  Google Scholar 

  52. Jin R, Chen X, Du Q, Feng H, Xie Y, King RB, Schaefer HF (2016) Binuclear iron carbonyl complexes of thialene. RSC Adv 6:82661–82668

    Article  CAS  Google Scholar 

  53. Wang H, Sun Z, Xie Y, King RB, Schaefer HF III (2010) Unsaturation and variable hapticity in binuclear azulene iron carbonyl complexes. Organometallics 29:630–641

    Article  CAS  Google Scholar 

  54. Chekkal F, Zendaoui SM, Zouchoune B, Saillard JY (2013) Structural and spin diversity of M (indenyl) 2 transition-metal complexes: a DFT investigation. New J Chem 37:2293–2302

    Article  CAS  Google Scholar 

  55. Farah S, Korichi H, Zendaoui SM, Saillard JY, Zouchoune B (2009) The coordination of azepine to transition-metal complexes: a DFT analysis. Inorg Chim Acta 362:3541–3546

    Article  CAS  Google Scholar 

  56. Zendaoui SM, Zouchoune B (2016) Coordination chemistry of mixed M(benzene)(cyclopendadienyl) sandwich complexes: electronic properties and bonding analysis. New J Chem 40:2554–2564

    Article  CAS  Google Scholar 

  57. Zouchoune B, Mansouri L (2017) Electronic structure and UV–Vis spectra simulation of square planar bis(1-(4-methylphenylazo)- 2-naphtol)-transition metal complexes [M(L)2]x (M = Ni, Pd, Pt, Cu, Ag). Struct Chem 30(3):691–701

    Article  CAS  Google Scholar 

  58. Tabrizi L, Zouchoune B, Zaiter A (2018) Experimental and theoretical investigation of cyclometallated platinum(II) complex containing adamantanemethylcyanamide and 1,4-naphthoquinone derivative as ligands). RSC Adv 9:287–300

    Article  PubMed  Google Scholar 

  59. Tabrizi L, Zouchoune B, Zaiter A (2019) Theoretical and experimental study of gold(III), palladium(II), and platinum (II) complexes with 3-((4-nitrophenyl)thio)phenylcyanamide and 2,2′-bipyridine ligands: cytotoxic activity and interaction with 9-methylguanine. Inorg Chim Act. https://doi.org/10.1016/j.ica.2019.119211

    Article  Google Scholar 

  60. Zendaoui SM, Zouchoune B (2013) Molecular properties and electronic structure of phenazine ligand in binuclear molybdenum and manganese metal complexes: a density functional theory study. Polyhedron 51:123–131

    Article  CAS  Google Scholar 

  61. Zendaoui SM, Saillard JY, Zouchoune B (2016) Ten-electron donor indenyl anion in binuclear transition-metal sandwich complexes: electronic structure and bonding analysis. Chem Select 1(5):940–948

    CAS  Google Scholar 

  62. Zouchoune B, Zendaoui SM, Saillard JY (2018) Why is bis-indenylchromium a dimer? A DFT investigation. J Organomet Chem 858:47–52

    Article  CAS  Google Scholar 

  63. Drideh S, Zouchoune B, Zendaoui SM, Saillard JY (2018) Electronic structure and structural diersity in indenyl in heterobinuclear transition-metal half-sandwich complexes. Theor Chem Acc 137:99

    Article  CAS  Google Scholar 

  64. Morokuma K (1971) Molecular orbital studies of hydrogen bonds. III. C= O··· H-O hydrogen bond in H2CO··· H2O and H2CO··· 2H2O. J Chem Phys 55:1236–1244

    Article  CAS  Google Scholar 

  65. Ziegler T, Rauk A (1979) Carbon monoxide, carbon monosulfide, molecular nitrogen, phosphorus trifluoride, and methyl isocyanide as. sigma. donors and. pi. acceptors. A theoretical study by the Hartree-Fock-Slater transition-state method. Inorg Chem 18:1755–1759

    Article  CAS  Google Scholar 

  66. Ziegler T, Rauk A (1979) A theoretical study of the ethylene-metal bond in complexes between copper (1+), silver (1+), gold (1+), platinum (0) or platinum (2+) and ethylene, based on the Hartree-Fock-Slater transition-state method. Inorg Chem 18:1558–1565

    Article  CAS  Google Scholar 

  67. Glendening ED (2005) Natural energy decomposition analysis: Extension to density functional methods and analysis of cooperative effects in water clusters. J Phys ChemA 109:11936–11940

    Article  CAS  Google Scholar 

  68. Glendening ED, Streitwieser A (1994) Natural energy decomposition analysis: an energy partitioning procedure for molecular interactions with application to weak hydrogen bonding, strong ionic, and moderate donor–acceptor interactions. J Chem Phys 100:2900–2909

    Article  CAS  Google Scholar 

  69. Glendening ED (1996) Natural energy decomposition analysis: explicit evaluation of electrostatic and polarization effects with application to aqueous clusters of alkali metal cations and neutrals. J Am Chem Soc 118:2473–2482

    Article  CAS  Google Scholar 

  70. Schenter GK, Glendening ED (1996) Natural energy decomposition analysis: the linear response electrical self energy. J Phys Chem 100:17152–17156

    Article  CAS  Google Scholar 

  71. ADF2016, SCM, Theoretical chemistry. Vrije Universiteit, Amsterdam. www.scm.com

  72. Baerends EJ, Ellis DE, Ros P (1973) Self-consistent molecular Hartree–Fock–Slater calculations The computational procedure. Chem Phys 2:41–51

    Article  CAS  Google Scholar 

  73. te Velde G, Baerends EJ (1992) Numerical integration for polyatomic systems. J Comput Phys 99:84–98

    Article  Google Scholar 

  74. Fonseca Guerra C, Snijders JG, te Velde G, Baerends EJ (1998) Towards an order-N DFT method. Theor Chem Acc 99:391–403

    Google Scholar 

  75. Bickelhaupt FM, Baerends EJ (2000) Kohn-Sham DFT: predicting and understanding chemistry. Rev Comput Chem 15:1–86

    CAS  Google Scholar 

  76. te Velde G, Bickelhaupt FM, Fonseca Guerra C, van Gisbergen SJA, Baerends EJ, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931–967

    Article  Google Scholar 

  77. Vosko SD, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Chem 58:1200–1211

    CAS  Google Scholar 

  78. Becke AD (1986) Density functional calculations of molecular bond energies. Chem Phys 84:4524–4529

    CAS  Google Scholar 

  79. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behaviour. Phys Rev A 3:3098–3100

    Article  Google Scholar 

  80. Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822–8824

    Article  CAS  Google Scholar 

  81. Perdew JP (1986) Erratum: density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 34:7406

    Article  CAS  Google Scholar 

  82. Becke AD (1993) Density-functional thermochemistry III. The role of exact exchange. J Chem Phys 98:5642–5648

    Article  Google Scholar 

  83. Lee C, Yang W, Parr RG (1998) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  Google Scholar 

  84. Versluis L, Ziegler T (1988) The determination of molecular structures by density functional theory. The evaluation of analytical energy gradients by numerical integration. J Chem Phys 88:322–329

    Article  CAS  Google Scholar 

  85. Fan L, Ziegler T (1992) Application of density functional theory to infrared absorption intensity calculations on main group molecules. Chem Phys 96:9005–9012

    CAS  Google Scholar 

  86. Fan L, Ziegler T (1992) Application of density functional theory to infrared absorption intensity calculations on transition-metal carbonyls. Phys Chem 96:6937–6941

    Article  CAS  Google Scholar 

  87. Wiberg KB (1968) Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24:1083–1096

    Article  CAS  Google Scholar 

  88. Weinhold F, Landis CR (2005) Valency and bonding: a natural bond order donor acceptor perspective. Cambridge University Press, Cambridge

    Google Scholar 

  89. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) Natural bond orbitals “analysis programs” theoretical chemistry institute. University of Wisconsin, Madison

    Google Scholar 

  90. Klamt A, Schüümann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2:799–805

    Article  Google Scholar 

  91. Mansouri L, Zouchoune B (2015) Electronic properties and substitution effects of the (2-phenylazo-l-naphthyl) Azo dye species: a TD-DFT electronic spectra investigation. Can J Chem 93:509–517

    Article  CAS  Google Scholar 

  92. Wang H, Xie Y, Dumitrescu IS, King RB, Schaefer HF III (2009) The mixed sandwich compounds C5H5MC7H7 of the first row transition metals: variable hapticity of the seven-membered ring. Mol Phys 108:883–894

    Article  CAS  Google Scholar 

  93. Fan Q, Feng H, Sun W, Li H, Xie Y, King RB, Scharfer HF III (2013) A new type of sandwich compound: homoleptic bis(trimethylenemethane) complexes of the first row transition metals. New J Chem 37:1545–1953

    Article  CAS  Google Scholar 

  94. Bendjaballah S, Kahlal S, Costuas K, Bévillon E, Saillard JY (2006) The versatility of pentalene coordination to transition metals: a density functional theory investigation. Chem Eur J 12:2048–2065

    Article  CAS  PubMed  Google Scholar 

  95. Zouchoune B, Merzoug M (2019) DFT investigation of homotrinuclear and heterotrinuclear [M3(Phz)2], [MM′2(Phz)2], [M3(CO)2(Phz)2], [MM′2(CO)2(Phz)2] sandwich complexes (M = Ti, Cr, Fe and Ni; M′ = V and Mn, Phz = C12H8N2): predicted models and electronic structures. Struc Chem 30:1859–1871

    Article  CAS  Google Scholar 

  96. Bensalem N, Zouchoune B (2016) Coordination capabilities of anthracene ligand in binuclear sandwich complexes: DFT investigation. Struct Chem 27:1781–1792

    Article  CAS  Google Scholar 

  97. Frenking G, Wichmann K, Fröchlich N, Grobe J, Golla W, Le Van D, Krebs B, Läge M (2002) Nature of the metal−ligand bond in M(CO)5PX3 complexes (M = Cr, Mo, W; X = H, Me, F, Cl): synthesis, molecular structure, and quantum-chemical calculations. Organometallics 21:2921–2930

    Article  CAS  Google Scholar 

  98. Benmachiche A, Zouchoune B (2019) Coordination and ligands’ effects in trinuclear [Pd3(COT)2(L)]2+ (L = H2O, CO, N2, HCN, HNC, NH3, PH3, PCl3, PF3, CS, CH2) sandwich complexes of cyclooctatetraene: theoretical investigation. Struct Chem. https://doi.org/10.1007/s11224-019-01351-8

    Article  Google Scholar 

  99. Aktan E, Babur B, Seferoglu Z, Hokelek T, Sahin E (2011) Synthesis and structure of a novel hetarylazoindole dye studied by X-ray diffraction, FT-IR, FT-Raman, UV–vis, NMR spectra and DFT calculations. J Mol Struct 1002:113–120

    Article  CAS  Google Scholar 

  100. Ekmekcioglu P, Karabocek N, Karabocek S, Emirik M (2015) Synthesis, structural and biochemical activity studies of a new hexadentate Schiff base ligand and its Cu(II), Ni(II), and Co(II) Complexes. J Mol Struct 1099:189–196

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Algerian MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique) and DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) for Financial support.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript is written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Bachir Zouchoune.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 61 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khireche, M., Zouchoune, B., Ferhati, A. et al. Understanding the chemical bonding in sandwich complexes of transition metals coordinated to nine-membered rings: energy decomposition analysis and the donor–acceptor charge transfers. Theor Chem Acc 140, 122 (2021). https://doi.org/10.1007/s00214-021-02802-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02802-4

Keywords

Navigation