Skip to main content
Log in

Quantum chemical investigation of the ground- and excited-state acidities of a dihydroxyfuranoflavylium cation

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The two hydroxyl groups of the 4′,7-dihydroxyfurano-3,2′-flavylium cation (1), a synthetic analog of the aurone pigments of plants, have been shown to have different relative acidities in the ground state (S0) and the lowest excited singlet state (S1). In the ground state, the 4′-OH group is slightly more acidic, while in the excited state, the molecule is strongly photoacidic and deprotonation occurs preferentially from the 7-OH group. In order to compare the relative acidities of these two OH groups via quantum chemical methodology, a common reference state was employed in which an explicit water molecule was hydrogen-bonded to each of the OH groups of 1. The relative acidities of the two OH groups were then inferred from the differential change in energy along the coordinate for proton transfer to the explicit water molecule via time-dependent density functional calculations (B3-LYP with Grimme’s D3 dispersion correction; TZVP basis set; and PCM to simulate an aqueous environment). The calculated acidity changes confirm the experimentally observed inversion in the relative acidities between S0 and S1. The enhanced photoacidity of S1 was also mirrored in the natural transition orbitals and the decrease in the negative change on the oxygen atoms of the OH groups. Employing a common reference state with an explicit water as the proton acceptor should thus serve as a convenient strategy for exploring the relative ground- and excited-state acidities of the OH groups of natural or synthetic dyes, especially when the values are not readily accessible through experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pina F (2014) Chemical applications of anthocyanins and related compounds. A source of bioinspiration. J Agric Food Chem 62:6885–6897

    Article  CAS  Google Scholar 

  2. Mattioli R, Francioso A, Mosca L, Silva P (2020) Anthocyanins: a comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules 25:3809. https://doi.org/10.3390/molecules25173809

    Article  CAS  PubMed Central  Google Scholar 

  3. Quina FH, Moreira PF, Vautier-Giongo C et al (2009) Photochemistry of anthocyanins and their biological role in plant tissues. Pure Appl Chem 81:1687–1694. https://doi.org/10.1351/Pac-Con-08-09-28

    Article  CAS  Google Scholar 

  4. Pina F, Oliveira J, De Freitas V (2015) Anthocyanins and derivatives are more than flavylium cations. Tetrahedron 71:3107–3114. https://doi.org/10.1016/j.tet.2014.09.051

    Article  CAS  Google Scholar 

  5. Castañeda-Ovando A, Pacheco-Hernández ML, Páez-Hernández ME et al (2009) Chemical studies of anthocyanins: a review. Food Chem 113:859–871. https://doi.org/10.1016/j.foodchem.2008.09.001

    Article  CAS  Google Scholar 

  6. Dangles O, Fenger J-A (2018) The chemical reactivity of anthocyanins and its consequences in food science and nutrition. Molecules 23:1970. https://doi.org/10.3390/molecules23081970

    Article  CAS  PubMed Central  Google Scholar 

  7. Basílio N, Pina F (2016) Chemistry and photochemistry of anthocyanins and related compounds: a thermodynamic and kinetic approach. Molecules 21:1502. https://doi.org/10.3390/molecules21111502

    Article  CAS  PubMed Central  Google Scholar 

  8. Quina FH, Bastos EL (2018) Chemistry inspired by the colors of fruits, flowers and wine. An Acad Bras Cienc 90:681–695. https://doi.org/10.1590/0001-3765201820170492

    Article  CAS  PubMed  Google Scholar 

  9. Moreira PF, Giestas L, Yihwa C et al (2003) Ground- and excited-state proton transfer in anthocyanins: from weak acids to superphotoacids. J Phys Chem A 107:4203–4210. https://doi.org/10.1021/jp027260i

    Article  CAS  Google Scholar 

  10. Freitas AA, Silva CP, Silva GTM et al (2018) Ground- and excited-state acidity of analogs of red wine pyranoanthocyanins. Photochem Photobiol 94:1086–1091. https://doi.org/10.1111/php.12944

    Article  CAS  PubMed  Google Scholar 

  11. Alejo-Armijo A, Parola AJ, Pina F (2019) pH-dependent multistate system generated by a synthetic furanoflavylium compound: an ancestor of the anthocyanin multistate of chemical species. ACS Omega 4:4091–4100. https://doi.org/10.1021/acsomega.8b03696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alejo-Armijo A, Basílio N, Freitas AA et al (2019) Ground and excited state properties of furanoflavylium derivatives. Phys Chem Chem Phys 21:21651–21662. https://doi.org/10.1039/c9cp04917g

    Article  CAS  PubMed  Google Scholar 

  13. Sinopoli A, Calogero G, Bartolotta A (2019) Computational aspects of anthocyanidins and anthocyanins: a review. Food Chem 297:1248. https://doi.org/10.1016/j.foodchem.2019.05.172

    Article  CAS  Google Scholar 

  14. Marcano E (2017) DFT study of anthocyanidin and anthocyanin pigments for dye-sensitized solar cells: electron injecting from the excited states and adsorption onto TiO2 (anatase) surface. Phys Sci Rev 2:8. https://doi.org/10.1515/psr-2017-0008

    Article  Google Scholar 

  15. Wang J, Siddique F, Freitas AA et al (2020) A computational study of the ground and excited state acidities of synthetic analogs of red wine pyranoanthocyanins. Theor Chem Acc 139:117. https://doi.org/10.1007/s00214-020-02633-9

    Article  CAS  Google Scholar 

  16. Phan K, De Meester S, Raes K et al (2021) A comparative study on the photophysical properties of anthocyanins and pyranoanthocyanins. Chem A Eur J 27:1–17. https://doi.org/10.1002/chem.202004639

    Article  CAS  Google Scholar 

  17. León-Carmona JR, Galano A, Alvarez-Idaboy JR (2016) Deprotonation routes of anthocyanidins in aqueous solution, pKa values, and speciation under physiological conditions. RSC Adv 6:53421–53429. https://doi.org/10.1039/c6ra10818k

    Article  Google Scholar 

  18. Siddique F, Silva CP, Silva GTM et al (2019) The electronic transitions of analogs of red wine pyranoanthocyanin pigments. Photochem Photobiol Sci 18:45–53. https://doi.org/10.1039/C8PP00391B

    Article  CAS  PubMed  Google Scholar 

  19. Aqdas A, Siddique F, Nieman R et al (2019) Photoacidity of the 7-hydroxyflavylium cation. Photochem Photobiol 95:1339–1344. https://doi.org/10.1111/php.13139

    Article  CAS  PubMed  Google Scholar 

  20. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  21. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:15104. https://doi.org/10.1063/1.3382344

    Article  CAS  Google Scholar 

  22. Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97:2571–2577. https://doi.org/10.1063/1.463096

    Article  Google Scholar 

  23. Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100:5829–5835. https://doi.org/10.1063/1.467146

    Article  Google Scholar 

  24. Gaussian 09, Revision A.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian, Inc., Wallingford CT

  25. Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilization of AB initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129. https://doi.org/10.1016/0301-0104(81)85090-2

    Article  Google Scholar 

  26. Amovilli C, Barone V, Cammi R et al (1999) Recent advances in the description of solvent effects with the polarizable continuum model. Adv Quantum Chem 32:227–261

    Article  Google Scholar 

  27. Miertus̃ S, Tomasi J (1982) Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. Chem Phys 65:239–245. https://doi.org/10.1016/0301-0104(82)85072-6

    Article  Google Scholar 

  28. Plasser F TheoDORE: a package for theoretical density, orbital relaxation, and exciton analysis. http://theodore-qc.sourceforge.net

  29. Plasser F (2020) TheoDORE: a toolbox for a detailed and automated analysis of electronic excited state computations. J Chem Phys 152:084108. https://doi.org/10.1063/1.5143076

    Article  CAS  PubMed  Google Scholar 

  30. Martin RL (2003) Natural transition orbitals. J Chem Phys 118:4775–4777. https://doi.org/10.1063/1.1558471

    Article  CAS  Google Scholar 

  31. Gorelsky SI, Lever ABP (2001) Electronic structure and spectra of ruthenium diimine complexes by density functional theory and INDO/S. Comparison of the two methods. J Organomet Chem 635:187–196

    Article  CAS  Google Scholar 

  32. Rohatgi A. WebPlotDigitizer. https://automeris.io/WebPlotDigitizer/index.html. Accessed 30 Mar 2021.

Download references

Acknowledgements

We are grateful for generous support by the School of Pharmaceutical Science and Technology, Tianjin University, China, including computer time on the SPST computer cluster Arran. The authors in Brazil thank INCT-Catálise (CNPq 465454/2014-3; 444061/2018-5) and NAP-PhotoTech for support, the CNPq for a research productivity fellowship (F.H.Q.) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001—for a post-doctoral fellowship (G.T.M.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adelia J. A. Aquino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Siddique, F., Nieman, R. et al. Quantum chemical investigation of the ground- and excited-state acidities of a dihydroxyfuranoflavylium cation. Theor Chem Acc 140, 90 (2021). https://doi.org/10.1007/s00214-021-02792-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02792-3

Keywords

Navigation