Skip to main content
Log in

Role of solute-solvent hydrogen bonds on the ground state and the excited state proton transfer in 3-hydroxyflavone. A systematic spectrophotometry study

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

A Correction to this article was published on 01 June 2020

This article has been updated

Abstract

A detailed account on the photophysics of 3-hydroxyflavone (3HF) in 27 organic solvents is reported. Dual fluorescence of neutral 3HF was observed in protic, polar, and weakly polar solvents, endowed with sufficiently high hydrogen bond accepting and/or donating capabilities. Ground-state solvent-induced 3HF deprotonation was reported in 14 cases. 3HF anion photophysics was investigated, and the deprotonation constant Kdep calculated. Previously reported models (based on solute-solvent intermolecular hydrogen bonds) to explain solvent effects on Excited-State Intramolecular Proton Transfer (ESIPT) and on solvent-induced deprotonation have been re-examined and improved in order to rationalize the observed photophysical behaviour in all the studied solvents. Hydrogen bond donor acidity and hydrogen bond acceptor basicity are shown to be key parameters. The results are discussed in the framework of the use of 3HF as an environment-sensitive fluorescent sensor in several research fields, and as a model system in the study of ESIPT reactions. Solvent effects on 3HF reactivity are also discussed, as the role of the surrounding media on the chemistry of flavonols is an emerging topic in natural product research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. A. S. Klymchenko, Acc. Chem. Res., 2017, 50, 366–375.

    Article  CAS  PubMed  Google Scholar 

  2. P. K. Sengupta, Reviews in Fluorescence, 2016, pp. 45–70.

    Google Scholar 

  3. A. S. Klymchenko and Y. Mely, Prog. Mol. Biol. Transl. Sci., 2013, 113, 35–58.

    Article  CAS  PubMed  Google Scholar 

  4. S. Protti and A. Mezzetti, Photochemistry, 2012, 40, 295–322.

    Article  CAS  Google Scholar 

  5. P. K. Sengupta and M. Kasha, Chem. Phys. Lett., 1979, 68, 382–385.

    Article  CAS  Google Scholar 

  6. D. McMorrow and M. Kasha, J. Phys. Chem., 1984, 88, 2235–2243.

    Article  CAS  Google Scholar 

  7. R. Lehnig, D. Pentlehner, A. Vdovin, B. Dick and A. Slenczka, J. Chem. Phys., 2009, 131, 194307.

    Article  CAS  PubMed  Google Scholar 

  8. A. N. Bader, F. Ariese and C. Gooijer, J. Phys. Chem. A, 2002, 106, 2844–2849.

    Article  CAS  Google Scholar 

  9. A. J. G. Strandjord and P. F. Barbara, J. Phys. Chem., 1985, 89, 2355–2361.

    Article  CAS  Google Scholar 

  10. G. A. Brucker, T. C. Swinney and D. F. Kelley, J. Phys. Chem., 1991, 95, 3190–3195.

    Article  CAS  Google Scholar 

  11. V. I. Tomin, in Hydrogen Bonding and Transfer in the Excited State ed. K.-L. Han and G.-J. Zhao, John Wiley & Sons, Ltd., Chichester, UK, 2010, vol. I & II, pp. 463–523, DOI: 10.1002/9780470669143.ch22.

  12. B. Dereka, R. Letrun, D. Svechkarev, A. Rosspeintner and E. Vauthey, J. Phys. Chem. B, 2014, 119, 2434–2443.

    Article  PubMed  CAS  Google Scholar 

  13. S. Das and N. Chattopadhyay, ChemistrySelect, 2017, 2, 6078–6081.

    Article  CAS  Google Scholar 

  14. S. A. Ahmed, B. Maity, S. Seth and D. Seth, J. Photochem. Photobiol., B, 2017, 168, 132–141.

    Article  CAS  Google Scholar 

  15. S. Protti, A. Mezzetti, J.-P. Cornard, C. Lapouge and M. Fagnoni, Chem. Phys. Lett., 2008, 467, 88–93.

    Article  CAS  Google Scholar 

  16. A. Douhal, M. Sanz, L. Tormo and J. A. Organero, ChemPhysChem, 2005, 6, 419–423.

    Article  CAS  PubMed  Google Scholar 

  17. P. K. Mandal and A. Samanta, J. Phys. Chem. A, 2003, 107, 6334–6339.

    Article  CAS  Google Scholar 

  18. D. A. Parthenopoulos and M. Kasha, Chem. Phys. Lett., 1990, 173, 303–309.

    Article  CAS  Google Scholar 

  19. S. Protti and A. Mezzetti, J. Mol. Liq., 2015, 205, 110–114.

    Article  CAS  Google Scholar 

  20. S. Protti, A. Mezzetti, C. Lapouge and J.-P. Cornard, Photochem. Photobiol. Sci., 2008, 7, 109–119.

    Article  CAS  PubMed  Google Scholar 

  21. S. L. Studer, W. E. Brewer, M. L. Martinez and P.-T. Chou, J. Am. Chem. Soc., 1989, 111, 7643–7644.

    Article  CAS  Google Scholar 

  22. Z. Szakács, M. Kállay and M. Kubinyi, RSC Adv., 2017, 7, 32185–32192.

    Article  Google Scholar 

  23. M. Musialik, R. Kuzmicz, T. S. Pawlowski and G. Litwinienko, J. Org. Chem., 2009, 74, 2699–2709.

    Article  CAS  PubMed  Google Scholar 

  24. P. Chou, D. McMorrow, T. J. Aartsma and M. Kasha, J. Phys. Chem., 1984, 88, 4596–4599.

    Article  CAS  Google Scholar 

  25. S. Protti, K. Raulin, O. Cristini, C. Kinowski, S. Turrell and A. Mezzetti, J. Mol. Struct., 2011, 993, 485–490.

    Article  CAS  Google Scholar 

  26. E. Biagtan, E. Goldberg, R. Stephens, E. Valeroso and J. Harmon, Nucl. Instrum. Methods Phys. Res., Sect. B, 1996, 114, 88–90.

    Article  CAS  Google Scholar 

  27. F. J. Aparicio, M. Alcaire, A. R. González-Elipe, A. Barranco, M. Holgado, R. Casquel, F. J. Sanz, A. Griol, D. Bernier, F. Dortu, S. Cáceres, M. Antelius, M. Lapis, H. Sohlström and F. Niklaus, Sens. Actuators, B, 2016, 228, 649–657.

    Article  CAS  Google Scholar 

  28. F. J. Aparicio, M. Alcaire, A. Borras, J. C. Gonzalez, F. López-Arbelo, I. Blasczcyk-Lezak, A. R. González-Elipe and A. Barranco, J. Mater. Chem. C, 2014, 2, 6561–6573.

    Article  CAS  Google Scholar 

  29. E. Karakus, M. Uçuncu and M. Emrullahoglu, Anal. Chem., 2016, 88, 1039–1043.

    Article  CAS  PubMed  Google Scholar 

  30. F. S. Santos, E. Ramasamy, V. Ramamurthy and F. S. Rodembusch, Photochem. Photobiol. Sci., 2014, 13, 992–996.

    Article  CAS  PubMed  Google Scholar 

  31. A. Capan, M. S. Bostan, E. Mozioglu, M. Akoz, A. C. Goren, M. S. Eroglu and T. Ozturk, J. Photochem. Photobiol., B, 2015, 153, 391–396.

    Article  CAS  Google Scholar 

  32. A. Sytnik and I. Litvinyuk, Proc. Natl. Acad. Sci. U. S. A., 1996, 93, 12959–12963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. L. Tormo and A. Douhal, J. Photochem. Photobiol., A, 2005, 173, 358–364.

    Article  CAS  Google Scholar 

  34. D. Loco, N. Gelfand, S. Jurinovich, S. Protti, A. Mezzetti and B. Mennucci, J. Phys. Chem. A, 2018, 122, 390–397.

    Article  CAS  PubMed  Google Scholar 

  35. S. Hofener, P. C. Kooijman, J. Groen, F. Ariese and L. Visscher, Phys. Chem. Chem. Phys., 2013, 15, 12572–12581.

    Article  PubMed  CAS  Google Scholar 

  36. Y. Nishimoto, J. Phys. Chem. A, 2016, 120, 771–784.

    Article  CAS  PubMed  Google Scholar 

  37. V. N. Agieienko, Y. V. Kolesnik and O. N. Kalugin, J. Chem. Phys., 2014, 140, 194501.

    Article  PubMed  CAS  Google Scholar 

  38. R. Salaeh, C. Prommin, W. Chansen, K. Kerdpol, R. Daengngern and N. Kungwan, J. Mol. Liq., 2018, 252, 428–438.

    Article  CAS  Google Scholar 

  39. M. A. Bellucci and D. F. Coker, J. Chem. Phys., 2012, 136, 194505.

    Article  PubMed  CAS  Google Scholar 

  40. V. N. Agieienko and O. N. Kalugin, J. Phys. Chem. B, 2014, 118, 12251–12262.

    Article  CAS  PubMed  Google Scholar 

  41. S. Das, S. Ghosh and N. Chattopadhyay, Chem. Phys. Lett., 2016, 644, 284–287.

    Article  CAS  Google Scholar 

  42. V. I. Tomin and D. U. Ushakou, J. Lumin., 2015, 166, 313–321.

    Article  CAS  Google Scholar 

  43. V. I. Tomin and D. V. Ushakou, J. Appl. Spectrosc., 2015, 82, 193–199.

    Article  CAS  Google Scholar 

  44. V. I. Tomin and D. V. Ushakou, J. Lumin., 2016, 178, 94–105.

    Article  CAS  Google Scholar 

  45. W. L. Whaley, E. M. Okoso-amaa, C. L. Womack, A. Vladimirova, L. B. Rodgers, M. J. Risher and M. H. Abraham, Nat. Prod. Commun., 2012, 7, 1–14.

    Google Scholar 

  46. Y. A. Davila, M. I. Sancho, M. C. Almandoz and S. E. Blanco, J. Chem. Eng. Data, 2013, 58, 1706–1716.

    Article  CAS  Google Scholar 

  47. V. I. Tomin, Opt. Spectrosc., 2012, 113, 41–52.

    Article  CAS  Google Scholar 

  48. W. Feng, L. Lie, L. Xiang-Ping, Y. Ya-Xin, Z. Gui-Lan and C. Wen-Ju, Chin. Phys. B, 2008, 17, 1461–1466.

    Article  Google Scholar 

  49. F. Wu, L. Ma, S. Zhang, Z. Wang and X. Cheng, Mod. Phys. Lett. B, 2015, 29, 1550181.

    Article  CAS  Google Scholar 

  50. V. I. Tomin and R. Jaworski, J. Mol. Struct., 2009, 924, 461–465.

    Article  CAS  Google Scholar 

  51. V. N. Agieienko, N. A. Ostrohko and O. N. Kalugin, J. Mol. Liq., 2017, 245, 27–34.

    Article  CAS  Google Scholar 

  52. V. Ya. Degoda, V. G. Pivovarenko, I. M. Moroz and D. Yu. Shilov, J. Lumin., 2015, 165, 174–178.

    Article  CAS  Google Scholar 

  53. W. L. F. Armarego and D. D. Perrin, Purification of Laboratory Chemicals, Reed Educational and Profesional Publishing, 4th edn, 1996, p. 143.

    Google Scholar 

  54. A. S. Klymchenko, V. G. Pivovarenko and A. P. Demchenko, Spectrochim. Acta, Part A, 2003, 59, 787–792.

    Article  CAS  Google Scholar 

  55. A. D. Roshal, A. V. Grigorovich, A. O. Doroshenko, V. G. Pivovarenko and A. P. Demchenko, J. Photochem. Photobiol., B, 1999, 127, 89–100.

    Article  CAS  Google Scholar 

  56. M. Voicescu, S. Ionescu and F. Gatea, J. Fluoresc., 2014, 24, 75–83.

    Article  CAS  PubMed  Google Scholar 

  57. V. I. Tomin, Opt. Spectrosc., 2011, 110, 550–556.

    Article  CAS  Google Scholar 

  58. A. S. Klymchenko and A. P. Demchenko, New J. Chem., 2004, 28, 687–692.

    Article  CAS  Google Scholar 

  59. A. S. Klymchenko, C. Kenfack, G. Duportail and Y. Mely, J. Chem. Sci., 2007, 119, 83–89.

    Article  CAS  Google Scholar 

  60. A. I. Skilitsi, D. Agathangelou, I. Shulov, J. Conyard, S. Haacke, Y. Mély, A. Klymchenko and J. Léonard, Phys. Chem. Chem. Phys., 2018, 20, 7885–7895.

    Article  CAS  PubMed  Google Scholar 

  61. C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 3rd edn, Wiley, 2004.

    Google Scholar 

  62. M. J. Kamlet, J. L. M. Abboud, M. H. Abraham and R. W. Taft, J. Org. Chem., 1983, 48, 2877–2887.

    Article  CAS  Google Scholar 

  63. M. H. Abraham, Chem. Soc. Rev., 1993, 22, 73–83.

    Article  CAS  Google Scholar 

  64. M. H. Abraham, P. L. Grellier, D. V. Prior, J. J. Morris and P. J. Taylor, J. Chem. Soc., Perkin Trans. 2, 1990, 521–529.

    Google Scholar 

  65. M. H. Abraham, in Computational Approaches in Supramolecular Chemistry, ed. G. Wipff, Kluwer Academic Press, 1994, pp. 63–78.

  66. A. Mezzetti, S. Protti, C. Lapouge and J.-P. Cornard, Phys. Chem. Chem. Phys., 2011, 13, 6858–6864.

    Article  CAS  PubMed  Google Scholar 

  67. J. Guharay, B. Sengupta and P. K. Sengupta, Proteins, 2001, 43, 75–81.

    Article  CAS  PubMed  Google Scholar 

  68. G. Litwinienko and K. U. Ingold, Acc. Chem. Res., 2007, 40, 222–230.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alberto Mezzetti or Stefano Protti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazzaroni, S., Dondi, D., Mezzetti, A. et al. Role of solute-solvent hydrogen bonds on the ground state and the excited state proton transfer in 3-hydroxyflavone. A systematic spectrophotometry study. Photochem Photobiol Sci 17, 923–933 (2018). https://doi.org/10.1039/c8pp00053k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00053k

Navigation