Skip to main content
Log in

A computational study of the ground and excited state acidities of synthetic analogs of red wine pyranoanthocyanins

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The color of mature red wines is due in large part to the chemical transformation of grape anthocyanins into pyranoanthocyanins. Given the difficulties of isolation and purification of pyranoanthocyanins from wines, experimental investigations have focused on pyranoflavylium cations, synthetic analogs that contain the basic chromophoric moiety of pyranoanthocyanins. Quantum chemical methodologies have been extensively employed to predict the physical, spectroscopic and photophysical properties of anthocyanins and, more recently, pyranoflavylium cations. In the present work, we employ TD-DFT with the B3-LYP functional and the def2-TZVP basis set, combined with estimation of solvation free energies via COSMO, to estimate a priori the pKa values of the ground state and the lowest excited singlet and triplet states of a series of seven substituted hydroxypyranoflavylium cations. For the ground state and the first excited singlet state, the quantum chemical results compare favorably to experimental values for most of these compounds. Although there are currently no experimental data for the lowest excited triplet state, the acidity is predicted to be more similar to that of the ground state than to the excited singlet state, as is generally found experimentally for photoacids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3

Similar content being viewed by others

References

  1. Pina F, Oliveira J, de Freitas V (2015) Anthocyanins and derivatives are more than flavylium cations. Tetrahedron 71(20):3107–3114

    CAS  Google Scholar 

  2. Pina F, Melo MJ, Laia CAT, Parola AJ, Lima JC (2012) Chemistry and applications of flavylium compounds: a handful of colours. Chem Soc Rev 41(2):869–908

    CAS  PubMed  Google Scholar 

  3. Santos-Buelga C, Mateus N, De Freitas V (2014) Anthocyanins. Plant pigments and beyond. J Agric Food Chem 62(29):6879–6884

    CAS  PubMed  Google Scholar 

  4. Sigurdson GT, Tang PP, Giusti MM (2017) Natural colorants: food colorants from natural sources. Ann Rev Food Sci Technol 8:261–280

    CAS  Google Scholar 

  5. Cortez R, Luna-Vital DA, Margulis D, de Mejia EG (2017) Natural pigments: stabilization methods of anthocyanins for food applications. Compr Rev Food Sci Saf 16(1):180–198

    CAS  Google Scholar 

  6. Dangles O, Fenger JA (2018) The chemical reactivity of anthocyanins and its consequences in food science and nutrition. Molecules 23(8):1970

    PubMed Central  Google Scholar 

  7. Quina FH, Bastos EL (2018) Chemistry inspired by the colors of fruits, flowers and wine. An Acad Bras Cienc 90(1):681–695

    CAS  PubMed  Google Scholar 

  8. Schwarz M, Wabnitz TC, Winterhalter P (2003) Pathway leading to the formation of anthocyanin-vinylphenol adducts and related pigments in red wines. J Agric Food Chem 51(12):3682–3687

    CAS  PubMed  Google Scholar 

  9. Marquez A, Serratosa MP, Merida J (2013) Pyranoanthocyanin derived pigments in wine: structure and formation during winemaking. J Chem. https://doi.org/10.1155/2013/713028

    Article  Google Scholar 

  10. Casassa LF, Harbertson JF (2014) Extraction, evolution, and sensory impact of phenolic compounds during red wine maceration. Ann Rev Food Sci Technol 5(5):83–109

    CAS  Google Scholar 

  11. Oliveira J, Mateus N, de Freitas V (2014) Previous and recent advances in pyranoanthocyanins equilibria in aqueous solution. Dyes Pigm 100:190–200

    CAS  Google Scholar 

  12. Sousa A, Cabrita L, Araujo P, Mateus N, Pina F, de Freitas V (2014) Color stability and spectroscopic properties of deoxyvitisins in aqueous solution. New J Chem 38(2):539–544

    CAS  Google Scholar 

  13. Brouillard R, Chassaing S, Fougerousse A (2003) Why are grape/fresh wine anthocyanins so simple and why is it that red wine color lasts so long? Phytochemistry 64(7):1179–1186

    CAS  PubMed  Google Scholar 

  14. Heras-Roger J, Diaz-Romero C, Darias-Martin J (2016) What gives a wine its strong red color? Main correlations affecting copigmentation. J Agric Food Chem 64(34):6567–6574

    CAS  PubMed  Google Scholar 

  15. Quaglieri C, Iachetti G, Jourdes M, Waffo-Teguo P, Teissedre PL (2016) Are pyranoanthocyanins involved in sensory effect in red wines? 39th world congress of vine and wine, vol 7, p 02007

  16. Garcia-Estevez I, Cruz L, Oliveira J, Mateus N, de Freitas V, Soares S (2017) First evidences of interaction between pyranoanthocyanins and salivary proline-rich proteins. Food Chem 228:574–581

    CAS  PubMed  Google Scholar 

  17. Guzman-Figueroa MD, Ortega-Regules AE, Bautista-Ortin AB, Gomez-Plaza E, Anaya-Berrios C (2016) New pyranoanthocyanins synthesized from Roselle (Hibiscus sabdariffa L.) Anthocyanins. J Mex Chem Soc 60(1):13–18

    CAS  Google Scholar 

  18. Akdemir H, Silva A, Zha J, Zagorevski DV, Koffas MAG (2019) Production of pyranoanthocyanins using Escherichia coli co-cultures. Metab Eng 55:290–298

    CAS  PubMed  Google Scholar 

  19. Chassaing S, Isorez-Mahler G, Kueny-Stotz M, Brouillard R (2015) Aged red wine pigments as a source of inspiration for organic synthesis the cases of the color-stable pyranoflavylium and flavylium-(4 → 8)-flavan chrornophores. Tetrahedron 71(20):3066–3078

    CAS  Google Scholar 

  20. Oliveira J, Araujo P, Fernandes A, Mateus N, de Freitas V (2016) Synthesis and structural characterization of amino-based pyranoanthocyanins with extended electronic delocalization. Synlett 27(17):2459–2462

    CAS  Google Scholar 

  21. Oliveira J, Fernandes A, de Freitas V (2016) Synthesis and structural characterization by LC–MS and NMR of a new semi-natural blue amino-based pyranoanthocyanin compound. Tetrahedron Lett 57(11):1277–1281

    CAS  Google Scholar 

  22. da Silva CP, Pioli RM, Liu L, Zheng SS, Zhang MJ, Silva GTD, Carneiro VMT, Quina FH (2018) Improved synthesis of analogues of red wine pyranoanthocyanin pigments. ACS Omega 3(1):954–960

    PubMed  PubMed Central  Google Scholar 

  23. Freitas AA, Silva CP, Silva GTM, Macanita AL, Quina FH (2017) From vine to wine: photophysics of a pyranoflavylium analog of red wine pyranoanthocyanins. Pure Appl Chem 89(12):1761–1767

    CAS  Google Scholar 

  24. Freitas AA, Silva CP, Silva GTM, Macanita AL, Quina FH (2018) Ground- and excited-state acidity of analogs of red wine pyranoanthocyanins. Photochem Photobiol 94(6):1086–1091

    CAS  PubMed  Google Scholar 

  25. Silva CP, Silva GTM, Costa TS, Carneiro VMT, Siddique F, Aquino AJA, Freitas A, Clarck JA, Espinoza EM, Vullev VI, Quina FH (2020) Chromophores inspired by the colors of fruit, flowers and wine. Pure Appl Chem 92(2):255–263

    CAS  Google Scholar 

  26. Silva GTM, Thomas SS, Silva CP, Schlothauer JC, Baptista MS, Freitas AA, Bohne C, Quina FH (2019) Triplet excited states and singlet oxygen production by analogs of red wine pyranoanthocyanins. Photochem Photobiol 95(1):176–182

    CAS  PubMed  Google Scholar 

  27. Alcaro S, Chiodo SG, Leopoldini M, Ortuso F (2013) Antioxidant efficiency of oxovitisin, a new class of red wine pyranoanthocyanins, revealed through quantum mechanical investigations. J Chem Inf Model 53(1):66–75

    CAS  PubMed  Google Scholar 

  28. Leopoldini M, Rondinelli F, Russo N, Toscano M (2010) Pyranoanthocyanins: a theoretical investigation on their antioxidant activity. J Agric Food Chem 58(15):8862–8871

    CAS  PubMed  Google Scholar 

  29. Gerard V, Ay E, Morlet-Savary F, Graff B, Galopin C, Ogren T, Mutilangi W, Lalevee J (2019) Thermal and photochemical stability of anthocyanins from black carrot, grape juice, and purple sweet potato in model beverages in the presence of ascorbic acid. J Agric Food Chem 67(19):5647–5660

    CAS  PubMed  Google Scholar 

  30. Li YK, Prejano M, Toscano M, Russo N (2019) Oenin/syringic acid copigmentation: insights from a theoretical study. Front Chem 7:579

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Azevedo J, Oliveira J, Cruz L, Teixeira N, Bras NF, De Freitas V, Mateus N (2014) Antioxidant features of red wine pyranoanthocyanins: experimental and theoretical approaches. J Agric Food Chem 62(29):7002–7009

    CAS  PubMed  Google Scholar 

  32. Mosquera RA, Estevez L, Bugarin MG (2015) Computational studies on conformation, electron density distributions, and antioxidant properties of anthocyanidins. Adv Protoc Oxid Stress III 1208:257–276

    CAS  Google Scholar 

  33. Vallverdu-Queralt A, Biler M, Meudec E, Le Guerneve C, Vernhet A, Mazauric JP, Legras JL, Loonis M, Trouillas P, Cheynier V, Dangles O (2016) p-Hydroxyphenyl-pyranoanthocyanins: an experimental and theoretical investigation of their acid-base properties and molecular interactions. Int J Mol Sci 17(11):1842

    PubMed Central  Google Scholar 

  34. He JJ, Li X, Silva GTM, Quina FH, Aquino AJA (2019) Quantum chemical investigation of the intramolecular copigmentation complex of an acylated anthocyanin. J Braz Chem Soc 30(3):492–498

    CAS  Google Scholar 

  35. Siddique F, Silva CP, Silva GTM, Lischka H, Quina FH, Aquino AJA (2019) The electronic transitions of analogs of red wine pyranoanthocyanin pigments. Photochem Photobiol Sci 18(1):45–53

    CAS  PubMed  Google Scholar 

  36. Sinopoli A, Calogero G, Bartolotta A (2019) Computational aspects of anthocyanidins and anthocyanins: a review. Food Chem 297:124898

    CAS  PubMed  Google Scholar 

  37. Trouillas P, Sancho-Garcia JC, De Freitas V, Gierschner J, Otyepka M, Dangles O (2016) Stabilizing and modulating color by copigmentation: insights from review theory and experiment. Chem Rev 116(9):4937–4982

    CAS  PubMed  Google Scholar 

  38. Pliego JR, Riveros JM (2002) Theoretical calculation of pK(a) using the cluster-continuum model. J Phys Chem A 106(32):7434–7439

    CAS  Google Scholar 

  39. Freitas AA, Shimizu K, Dias LG, Quina FH (2007) A computational study of substituted flavylium salts and their quinonoidal conjugate-bases: S-0 → S-1 electronic transition, absolute pK(a) and reduction potential calculations by DFT and semiempirical methods. J Braz Chem Soc 18(8):1537–1546

    CAS  Google Scholar 

  40. Ho JM, Coote ML (2011) First-principles prediction of acidities in the gas and solution phase. Wiley Interdiscip Rev Comput Mol Sci 1(5):649–660

    CAS  Google Scholar 

  41. Leon-Carmona JR, Galano A, Alvarez-Idaboy JR (2016) Deprotonation routes of anthocyanidins in aqueous solution, pK(a) values, and speciation under physiological conditions. RSC Adv 6(58):53421–53429

    CAS  Google Scholar 

  42. Becke AD (1993) Density-functional thermochemistry. 3. The role of exact exchange. J Chem Phys 98(7):5648–5652

    CAS  Google Scholar 

  43. Moller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46(7):0618–0622

    CAS  Google Scholar 

  44. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104

    Google Scholar 

  45. Furche F, Ahlrichs R (2002) Adiabatic time-dependent density functional methods for excited state properties. J Chem Phys 117(16):7433–7447

    CAS  Google Scholar 

  46. Hattig C (2005) Structure optimizations for excited states with correlated second-order methods: CC2 and ADC(2). Adv Quantum Chem 50:37–60

    Google Scholar 

  47. Klamt A, Jonas V (1996) Treatment of the outlying charge in continuum solvation models. J Chem Phys 105(22):9972–9981

    CAS  Google Scholar 

  48. Albright PS, Gosting LJ (1946) Dielectric constants of the methanol water system from 5-degrees to 55-degrees. J Am Chem Soc 68(6):1061–1063

    CAS  PubMed  Google Scholar 

  49. Iglesias M, Orge B, Tojo J (1996) Refractive indices, densities and excess properties on mixing of the systems acetone plus methanol plus water and acetone plus methanol plus 1-butanol at 298.15 K. Fluid Phase Equilib 126(2):203–223

    CAS  Google Scholar 

  50. Weigend F, Furche F, Ahlrichs R (2003) Gaussian basis sets of quadruple zeta valence quality for atoms H-Kr. J Chem Phys 119(24):12753–12762

    CAS  Google Scholar 

  51. Plasser F, Lischka H (2012) Analysis of excitonic and charge transfer interactions from quantum chemical calculations. J Chem Theory Comput 8(8):2777–2789

    CAS  PubMed  Google Scholar 

  52. Martin RL (2003) Natural transition orbitals. J Chem Phys 118(11):4775–4777

    CAS  Google Scholar 

  53. Plasser F, Wormit M, Dreuw A (2014) New tools for the systematic analysis and visualization of electronic excitations. I. Formalism. J Chem Phys 141(2):024106

    PubMed  Google Scholar 

  54. Plasser F, Bappler SA, Wormit M, Dreuw A (2014) New tools for the systematic analysis and visualization of electronic excitations. II. Applications. J Chem Phys 141(2):024107

    PubMed  Google Scholar 

  55. Ahlrichs R, Bar M, Haser M, Horn H, Kolmel C (1989) Electronic-structure calculations on workstation computers—the program system turbomole. Chem Phys Lett 162(3):165–169

    CAS  Google Scholar 

  56. Vogt RA, Reichardt C, Crespo-Hernández CE (2013) Excited-state dynamics in nitro-naphthalene derivatives: intersystem crossing to the triplet manifold in hundreds of femtoseconds. J Phys Chem A 117(30):6580–6588

    CAS  PubMed  Google Scholar 

  57. Zobel JP, Nogueira JJ, González L (2018) Mechanism of ultrafast intersystem crossing in 2-nitronaphthalene. Chem Eur J 24(20):5379–5387

    CAS  PubMed  Google Scholar 

  58. Camaioni DM, Schwerdtfeger CA (2005) Comment on “Accurate experimental values for the free energies of hydration of H+, OH, and H3O+”. J Phys Chem A 109(47):10795–10797

    CAS  PubMed  Google Scholar 

  59. Kelly CP, Cramer CJ, Truhlar DG (2006) Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. J Phys Chem B 110(32):16066–16081

    CAS  PubMed  Google Scholar 

  60. Kalidas C, Hefter G, Marcus Y (2000) Gibbs energies of transfer of cations from water to mixed aqueous organic solvents. Chem Rev 100(3):819–852

    CAS  PubMed  Google Scholar 

  61. Jackson G, Porter G (1961) Acidity constants in triplet state. Proc R Soc Lond Ser A 260(1300):13

    CAS  Google Scholar 

  62. Paul WL, Schulman SG (1973) Ionization equilibria in ground, lowest excited singlet, and lowest triplet-states of benzamide. Anal Chem 45(2):415–416

    CAS  Google Scholar 

  63. Rophatgi-Mukherjee KK (1986) Fundamentals of photochemistry, Revised edn. New Age International Ltd., New Delhi

    Google Scholar 

Download references

Acknowledgements

We are grateful for generous support by the School of Pharmaceutical Science and Technology, Tianjin University, China, including computer time on the SPST computer cluster Arran, and for computer time at the Vienna Scientific Cluster (VSC), Project No. 70376. F. H. Q and G. T. M. S. thank the CNPq and CAPES (Finance code 001), Brazil, for fellowships and NAP-PhotoTech, INCT-Catálise (CNPq 465454/2014-3 and 444061/2018-5), and CNPq (FHQ Universal Grant 408181/2016-3) for funding. A.A.F. thanks the FCT, Portugal (SFRH/BPD/94299/2013), for fellowship support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frank H. Quina, Hans Lischka or Adelia J. A. Aquino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

“Festschrift in honor of Prof. Fernando R. Ornellas” Guest Edited by Adélia Justino Aguiar Aquino, Antonio Gustavo Sampaio de Oliveira Filho & Francisco Bolivar Correto Machado.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22185 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Siddique, F., Freitas, A.A. et al. A computational study of the ground and excited state acidities of synthetic analogs of red wine pyranoanthocyanins. Theor Chem Acc 139, 117 (2020). https://doi.org/10.1007/s00214-020-02633-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02633-9

Keywords

Navigation