Skip to main content
Log in

Detailed theoretical kinetics studies on the product formation from the reaction of the criegee intermediate CH2OO with H2O molecule

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In the present theoretical investigation, the mechanism and kinetics of the reaction of the simplest Criegee intermediate CH2OO with water molecule is studied in detail. The rate coefficients for the formation of different products, especially OH radical through the mechanism CH2OO + H2O → HMHP → HOCH2O + OH, are calculated. The structures of the stationary points involved in the CH2OO + H2O reaction are explored by the meta-GGA density functional method M11-L employing MG3S basis set. Accurate energies are obtained by electronic energy calculations at W1RO and CCSDT(Q) levels of theory. The title reaction proceeds via formation of a relatively strong hydrogen-bonded complex. Next, the energized adduct hydroxymethyl hydroperoxide (HMHP) is formed which could be stabilized by molecular collisions or dissociates to HOCH2O + OH (P1), HCOOH + H2O (P2), CH2O + HOOH (P3) or CH2O + H2OO (P4). Here, a two-transition-state model is used to estimate the effective transition-state flux through the initial step of the process. A master equation formalism is used to calculate the collisional stabilization of HMHP. A flexible transition-state model is used to calculate the micro-canonical rate coefficients for the dissociation process HMHP → OCH2O + OH. It is found that the computed rate coefficients are not affected by considering the formation of initial hydrogen-bonded complex. In addition, HOCH2O + OH is major product of the CH2OO + H2O reaction over a vast temperature and pressure range of atmospheric importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Khan M, Percival C, Caravan R, Taatjes C, Shallcross D (2018) Environ Sci Proc Imp 20:437–453

    CAS  Google Scholar 

  2. Osborn DL, Taatjes CA (2015) Int Rev Phys Chem 34:309–360

    Article  CAS  Google Scholar 

  3. Meidan D, Holloway JS, Edwards PM, Dubé WP, Middlebrook AM, Liao J, Welti A, Graus M, Warneke C, Ryerson TB (2019) ACS Earth Space Chem 3:748–759

    Article  CAS  Google Scholar 

  4. Giorio C, Campbell SJ, Bruschi M, Archibald AT, Kalberer M (2017) Faraday Discuss 200:559–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lester MI, Klippenstein SJ (2018) Acc Chem Res 51:978–985

    Article  CAS  PubMed  Google Scholar 

  6. Sun C, Xu B, Lv L, Zhang S (2019) Phys Chem Chem Phys 21:16583–16590

    Article  CAS  PubMed  Google Scholar 

  7. Chhantyal-Pun R, Shannon RJ, Tew DP, Caravan RL, Duchi M, Wong C, Ingham A, Feldman C, McGillen MR, Khan MAH (2019) Phys Chem Chem Phys 21:14042–14052

    Article  CAS  PubMed  Google Scholar 

  8. Chung C-A, Su JW, Lee Y-P (2019) Phys Chem Chem Phys 21:21445–21455

    Article  CAS  PubMed  Google Scholar 

  9. Mauldin RL, Berndt T, Sipilä M, Paasonen P, Petäjä T, Kim S, Kurtén T, Stratmann F, Kerminenand VM, Kulmala M (2012) Nature 488:193–196

    Article  CAS  PubMed  Google Scholar 

  10. Berndt T, Kaethner R, Voigtländer J, Stratmann F, Pfeifle M, Reichle P, Sipilä M, Kulmala M, Olzmann M (2015) Phys Chem Chem Phys 17:19862–19873

    Article  CAS  PubMed  Google Scholar 

  11. Long B, Bao JL, Truhlar DG (2016) J Am Chem Soc 138:14409–14422

    Article  CAS  PubMed  Google Scholar 

  12. Long B, Bao JL, Truhlar DG (2018) Proc Natl Acad Sci 115:6135–6140

    Article  CAS  PubMed  Google Scholar 

  13. Lin L, Chang H, Chang C, Chao W, Smith MC, Chang C, Lin JJ, Takahashi K (2016) Phys Chem Chem Phys 18:4557–4568

    Article  CAS  PubMed  Google Scholar 

  14. Heard D (2004) Geophys Res Lett 31(L18112):1–5

    Google Scholar 

  15. Emmerson K, Carslaw N, Pilling M (2005) J Atmos Chem 52:165–183

    Article  CAS  Google Scholar 

  16. Welz O, Savee JD, Osborn DL, Vasu SS, Percival CJ, Shallcross DE, Taatjes CA (2012) Science 335:204–207

    Article  CAS  PubMed  Google Scholar 

  17. Chao W, Hsieh J-T, Chang C-H, Lin JJ-M (2015) Science 347:751–754

    Article  CAS  PubMed  Google Scholar 

  18. Stone D, Blitz M, Daubney L, Howes NUM, Seakins P (2014) Phys Chem Chem Phys 16:1139–1149

    Article  CAS  PubMed  Google Scholar 

  19. Ouyang B, McLeod MW, Jones RL, Bloss JW (2013) Phys Chem Chem Phys 15:17070–17075

    Article  CAS  PubMed  Google Scholar 

  20. Newland MJ, Rickard AR, Alam MS, Vereecken L, Munoz A, Rodenas M, Bloss WJ (2015) Phys Chem Chem Phys 17:4076–4088

    Article  CAS  PubMed  Google Scholar 

  21. Nguyen TB, Tyndall GS, Crounse JD, Teng AP, Bates KH, Schwantes RH, Coggon MM, Zhang L, Feiner P, Milller DO, Skog KM, Rivera-Rios JC, Dorris M, Olson KF, Koss A, Wild RJ, Brown SS, Goldstein AH, de Gouw JA, Brune WH, Keutsch FN, Seinfeld JH, Wennberg PO (2016) Phys Chem Chem Phys 18:10241–10254

    Article  CAS  PubMed  Google Scholar 

  22. Hasson AS, Chung MY, Kuwata KT, Converse AD, Krohn D, Paulson SE (2003) J Phys Chem A 107:6176–6182

    Article  CAS  Google Scholar 

  23. Ryzhkov AB, Ariya PA (2003) Chem Phys Lett 367:423–429

    Article  CAS  Google Scholar 

  24. Ryzhkov AB, Ariya PA (2006) Chem Phys Lett 419:479–485

    Article  CAS  Google Scholar 

  25. Chen L, Wang W, Zhou L, Wang W, Liu F, Li C, Lü J (2016) Theor Chem Acc 135(1–12):252

    Article  Google Scholar 

  26. Chen L, Wang W, Wang W, Liu Y, Liu F, Liu N, Wang B (2016) Theor Chem Acc 135(1–12):131

    Article  Google Scholar 

  27. Wei W-M, Hong S, Fang W-J, Zheng R-H, Qin Y-D (2019) Theor Chem Acc 138(1–10):13

    Article  Google Scholar 

  28. Anglada JM, Crehuet R, Francisco JS (2016) Chem Eur J 22:1–10

    Article  Google Scholar 

  29. Allen HM, Crounse JD, Bates KH, Teng AP, Krawiec-Thayer MP, Rivera-Rios JC, Keutsch FN, St Clair JM, Hanisco TF, Møller KH, Kjaergaard HG, Wennberg PO (2018) J Phys Chem A 122:6292–6302

    Article  CAS  PubMed  Google Scholar 

  30. Peverati R, Truhlar DG (2012) J Phys Chem Lett 3:117–124

    Article  CAS  Google Scholar 

  31. Martin JML, de Oliveira G (1999) J Chem Phys 111:1843–1856

    Article  CAS  Google Scholar 

  32. Kállay M, Gauss J (2005) J Chem Phys 123(214105):1–14

    Google Scholar 

  33. Kállay M, Gauss J (2008) J Chem Phys 129(144101):1–10

    Google Scholar 

  34. Karton A (2019) J Phys Chem A 123:6720–6732

    Article  CAS  PubMed  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian 09 Revision. A1 Gaussian Inc, Wallingford CT

  36. Kállay M, Nagy PR, Mester D, Rolik Z, Samu G, Csontos J, Csóka J, Szabó PB, Gyevi-Nagy L, Hégely B, Ladjánszki I, Szegedy L, Ladóczki B, Petrov K, Farkas M, Mezei PD, Ganyecz Á (2020) J Chem Phys 152:074107

  37. Kállay M, Nagy PR, Mester D, Rolik Z, Samu G, Csontos J, Csóka J, Szabó PB, Gyevi-Nagy L, Hégely B, Ladjánszki I, Szegedy L, Ladóczki B, Petrov K, Farkas M, Mezei PD, Ganyecz Á, MRCC (2020) See www.mrcc.hu

  38. Greenwald EE, North SW, Georgievskii Y, Klippenstein SJ (2005) A two transition state model for radical-molecule reactions: a case study of the addition of OH to C2H4. J Phys Chem A 109:6031–6044

    Article  CAS  PubMed  Google Scholar 

  39. Klippenstein SJ (1990) Chem Phys Lett 170:71–77

    Article  CAS  Google Scholar 

  40. Klippenstein SJ (1994) J Phys Chem 98:11459–11464

    Article  CAS  Google Scholar 

  41. Wardlaw DM, Marcus R (1986) J Phys Chem 90:5383–5393

    Article  CAS  Google Scholar 

  42. Wardlaw DM, Marcus R (1984) Chem Phys Lett 110:230–234

    Article  CAS  Google Scholar 

  43. Klippenstein SJ, Khundkar LR, Zewail AH, Marcus RA (1988) J Phys Chem 89:4761–4770

    Article  CAS  Google Scholar 

  44. Klippenstein SJ (1991) J Chem Phys 94:6469–6482

    Article  CAS  Google Scholar 

  45. Klippenstein SJ, Wagner AF, Dunbar RC, Wardlaw DM, Robertson SH (1999) VARIFLEX: VERSION 1.0

  46. Holbrook K, Pilling M, Robertson S (1996) Unimolecular reactions. John Wiley & Sons Inc, Chichester

    Google Scholar 

  47. Troe J (1977) J Chem Phys 66:4745–4757

    Article  CAS  Google Scholar 

  48. Seakins P, Robertson S, Pilling M, Slagle I, Gmurczyk G, Bencsura A, Gutman D, Tsang W (1993) J Phys Chem 97:4450–4458

    Article  CAS  Google Scholar 

  49. Miller WH (1975) J Chem Phys 62:1899–1906

    Article  CAS  Google Scholar 

  50. Miller WH (1977) Faraday Discuss Chem Soc 62:40–46

    Article  CAS  Google Scholar 

  51. Hernandez R, Miller WH (1993) Chem Phys Lett 214:129–136

    Article  CAS  Google Scholar 

  52. Nguyen TL, Stanton JF, Barker JR (2011) J Phys Chem A 115:5118–5126

    Article  CAS  PubMed  Google Scholar 

  53. Barker JR, Nguyen TL, Stanton JF (2012) J Phys Chem A 116:6408–6419

    Article  CAS  PubMed  Google Scholar 

  54. Miller WH, Hernandez R, Handy NC, Jayatilaka D, Willets A (1990) Chem Phys Lett 172:62–68

    Article  CAS  Google Scholar 

  55. Nguyen TL, Stanton JF, Barker JR (2010) Chem Phys Lett 499:9–15

    Article  CAS  Google Scholar 

  56. Barker JR, Nguyen TL, Stanton JF, Aieta C, Ceotto M, Gabas F, Kumar TJD, Li CGL, Lohr LL, Maranzana A, Ortiz NF, Preses JM, Simmie JM, Sonk JA, Stimac PJ (2020) MultiWell-2020 software suite; Barker J R, University of Michigan, Ann Arbor, Michigan, USA. http://clasp-research.engin.umich.edu/multiwell/

  57. Barker JR (2001) Int J Chem Kinet 33:232–245

    Article  CAS  Google Scholar 

  58. Barker JR (2009) Int J Chem Kinet 41:748–763

    Article  CAS  Google Scholar 

  59. Basire M, Parneix P, Calvo F (2008) J Chem Phys 129:081101

  60. Wang F, Landau DP (2001) Phys Rev Lett 86:2050–2053

    Article  CAS  PubMed  Google Scholar 

  61. Nguyen TL, Barker JR (2010) J Phys Chem A 114:3718–3730

    Article  CAS  PubMed  Google Scholar 

  62. Truhlar DG, Garrett BC, Klippenstein SJ (1996) J Phys Chem 100:12771–12800

    Article  CAS  Google Scholar 

  63. Kurylo MJ, Orkin VL (2003) Chem Rev 103:5049–5076

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Shahid Bahonar University of Kerman Research Council for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Saheb.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saheb, V. Detailed theoretical kinetics studies on the product formation from the reaction of the criegee intermediate CH2OO with H2O molecule. Theor Chem Acc 140, 73 (2021). https://doi.org/10.1007/s00214-021-02779-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02779-0

Keywords

Navigation