Skip to main content
Log in

Water-catalyzed decomposition of the simplest Criegee intermediate CH2OO

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A comprehensive theoretical study on the gas-phase decomposition of the CH2OO intermediate is performed at the CCSD(T)//B3LYP/6-311+G(2df,2p) level in the presence of water molecules [n(H2O), n = 1–3]. The calculated results show that the most favorable route is the formation of dioxirane pathway (R3) in the unimolecular decomposition of CH2OO. For the reactions of CH2OO with uni-, bi-, and trimolecular water, the predominant pathway is the CH2OO with bimolecular water reaction as the major product is cis-HMHP. Compared with the barrier of CH2OO reaction with unimolecular water, an addition of water molecule contributes to a reduction of 4.91 kcal mol−1 for the barrier. The elimination processes of cis-HMHP have two parallel competitive pathways: trans-HCOOH + H2O (R9) and HCOH + H2O2 (R10). The apparent activation barriers of these two reactions are significantly reduced with the increase in the number of water molecules involved. The barrier of R9 is higher than that of R10 about 8–15 kcal mol−1 in the presence of water molecules, meaning that the favorable route is the formation of HCOH + H2O2 in the decomposition of cis-HMHP. The rate coefficients of CH2OO reaction with unimolecular water satisfy a positive temperature coefficient behavior at 298–500 K, whereas the rate coefficients of CH2OO reaction with bimolecular water exhibit a negative temperature dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Edmond PFL, Daniel KWM, Dudley ES, Carl JP, David LO, Craig AT, John MD (2012) Chem Eur J 18:12411

    Article  Google Scholar 

  2. Vereecken L, Harder H, Novelli A (2012) Phys Chem Chem Phys 14:14682

    Article  CAS  Google Scholar 

  3. Smith MC, Chang CH, Chao W, Lin LC, Takahashi K, Boering KA, Lin JJM (2015) J Phys Chem Lett 6:2708

    Article  CAS  Google Scholar 

  4. Criegee R, Wenner G (1949) Chem Ber 82:9

    Google Scholar 

  5. Su YT, Huang YH, Witek HA, Lee YP (2013) Science 340:174

    Article  CAS  Google Scholar 

  6. Anglada JM, González J, Torrent-Sucarrat M (2011) Phys Chem Chem Phys 13:13034

    Article  CAS  Google Scholar 

  7. Li J, Carter S, Bowman JM, Dawes R, Xie DQ, Guo H (2014) J Phys Chem Lett 5:2364

    Article  CAS  Google Scholar 

  8. Ouyang B, McLeod MW, Jones RL, Bloss WJ (2013) Phys Chem Chem Phys 15:17070

    Article  CAS  Google Scholar 

  9. Kuwata KT, Guinn EJ, Hermes MR, Fernandez JA, Mathison JM, Huang K (2015) J Phys Chem A 119:10316

    Article  CAS  Google Scholar 

  10. Berndt T, Kaethner R, Voigtländer J, Stratmann F, Pfeifle M, Reichle P, Sipilä M, Kulmala M, Olzmann M (2015) Phys Chem Chem Phys 17:19862

    Article  CAS  Google Scholar 

  11. Zhang WC, Du BN, Qin ZL (2014) J Phys Chem A 118:4797

    Article  CAS  Google Scholar 

  12. Zhang TL, Wang R, Chen H, Min ST, Wang ZY, Zhao CB, Xu Q, Jin LX, Wang WL, Wang ZQ (2015) Phys Chem Chem Phys 17:15046

    Article  CAS  Google Scholar 

  13. Inaba S (2014) J Phys Chem A 118:3026

    Article  CAS  Google Scholar 

  14. Stone D, Blitz M, Daubney L, Howes NUM, Seakins P (2014) Phys Chem Chem Phys 16:1139

    Article  CAS  Google Scholar 

  15. Chao W, Hsieh JT, Chang CH, Lin JJM (2015) Science 347:751

    Article  CAS  Google Scholar 

  16. Lewis TR, Blitz MA, Heard DE, Seakins PW (2015) Phys Chem Chem Phys 17:4859

    Article  CAS  Google Scholar 

  17. Nguyen TN, Putikam R, Lin MC (2015) J Chem Phys 142:124312

    Article  Google Scholar 

  18. Kumar M, Busch DH, Subramaniam B, Thompson WH (2014) J Phys Chem A 118:9701

    Article  CAS  Google Scholar 

  19. Frisch MJ et al (2009) Gaussian 09, revision C.01. Gaussian Inc, Wallingford

    Google Scholar 

  20. Werner HJ et al MOLPRO, version 2010.1. http://www.molpro.net

  21. Zheng JJ, Truhlar DG (2009) J Phys Chem A 113:11919

    Article  CAS  Google Scholar 

  22. Su YT, Lin HY, Putikam R, Matsui H, Lin MC, Lee YP (2014) Nat Chem 6:477

    Article  CAS  Google Scholar 

  23. Buras ZJ, Elsamra RMI, Jalan A, Middaugh JE, Green WH (2014) J Phys Chem A 118:1997

    Article  CAS  Google Scholar 

  24. Vereecken L, Glowacki DR, Pilling MJ (2015) Chem Rev 115:4063

    Article  CAS  Google Scholar 

  25. Miliordos E, Xantheas SS (2016) Angew Chem 128:1027

    Article  Google Scholar 

  26. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154

    Article  CAS  Google Scholar 

  27. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523

    Article  CAS  Google Scholar 

  28. Fukui K (1981) Acc Chem Res 14:363

    Article  CAS  Google Scholar 

  29. Page M, Mclver JW (1988) J Chem Phys 88:922

    Article  CAS  Google Scholar 

  30. Mendes J, Zhou CW, Curran HJ (2013) J Phys Chem A 117:4515

    Article  CAS  Google Scholar 

  31. Mendes J, Zhou CW, Curran HJ (2013) J Phys Chem A 117:14006

    Article  CAS  Google Scholar 

  32. Eckart C (1930) Phys Rev 35:1303

    Article  CAS  Google Scholar 

  33. Garrett BC, Truhlar DG (1979) J Phys Chem 83:2921

    Article  CAS  Google Scholar 

  34. Johnston HS, Heicklen J (1962) J Phys Chem 66:532

    Article  Google Scholar 

  35. Zhang TL, Wang WL, Zhang P, Lü J, Zhang Y (2011) Phys Chem Chem Phys 13:20794

    Article  CAS  Google Scholar 

  36. Zhang P, Wang WL, Zhang TL, Chen L, Du YM, Li CY, Lü J (2012) J Phys Chem A 116:4610

    Article  CAS  Google Scholar 

  37. Duncan WT, Bell RL, Truong TN (1998) J Comput Chem 19:1039

    Article  CAS  Google Scholar 

  38. Curtiss LA, Redfern PC, Raghavachari K (2007) J Chem Phys 126:084108

    Article  Google Scholar 

  39. McCarthy MC, Cheng L, Crabtree KN, Martinez O, Nguyen TL, Womack CC, Stanton JF (2013) J Phys Chem Lett 4:4133

    Article  CAS  Google Scholar 

  40. Nakajima M, Endo Y (2013) J Chem Phys 139:101103

    Article  Google Scholar 

  41. Nguyen MT, Nguyen TL, Ngan VT, Nguyen HMT (2007) Chem Phys Lett 448:183

    Article  CAS  Google Scholar 

  42. Shallcross DE, Leather KE, Bacak A, Xiao P, Lee EPF, Ng M, Mok DKW, Dyke JM, Hossaini R, Chipperfield MP, Khan MAH, Percival CJ (2015) J Phys Chem A 119:4618

    Article  CAS  Google Scholar 

  43. Aranda A, LeBras G, LaVerdet G, Poulet G (1997) Geophys Res Lett 24:2745

    Article  CAS  Google Scholar 

  44. Karton A, Kettner M, Wild DA (2013) Chem Phys Lett 585:15

    Article  CAS  Google Scholar 

  45. Aplincourt P, Ruiz-López MF (2000) J Am Chem Soc 122:8990

    Article  CAS  Google Scholar 

  46. Harding LB, Klippenstein SJ (2015) J Chem Phys 143:167101

    Article  Google Scholar 

  47. Ryzhkov AB, Ariya PA (2006) Chem Phys Lett 419:479

    Article  CAS  Google Scholar 

  48. Cao J, Wang ZX, Gao LJ, Fu F (2015) J Mol Model 21:66

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos: 21473108, 21473107) and Shaanxi Innovative Team of Key Science and Technology (2013KCT-17). The authors thank Researcher Hongyan Xiao of Technical Institute of Physics and Chemistry for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenliang Wang or Bozhou Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 26069 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Wang, W., Wang, W. et al. Water-catalyzed decomposition of the simplest Criegee intermediate CH2OO. Theor Chem Acc 135, 131 (2016). https://doi.org/10.1007/s00214-016-1894-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1894-9

Keywords

Navigation