Skip to main content
Log in

Role of water clusters in the reaction of the simplest Criegee intermediate CH2OO with water vapour

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A comprehensive theoretical study on the role of water clusters ((H2O) n , n = 3–5) in the reaction of CH2OO with water vapour is done at the CCSD(T)//M06-2X/6-311 + G(2df,2p) level of theory. Our simulation results show that the contribution of entropic effect is significantly increased with the increase in the number of water molecules involved. The main products of CH2OO reaction with water vapour are α-hydroxymethyl hydroperoxide and its isomers. Contrary to the reaction of CH2OO with unimolecular water (10.91 kcal mol−1), the barriers of reactions with bi- and trimolecular water are further reduced to 5.25 and 4.75 kcal mol−1, respectively. Among these three reactions, the predominant pathway is the reaction of CH2OO with bimolecular water owing to its lower barrier and the high concentration of (H2O)2 ([(H2O)2] ≈ 2.47 × 1014 molecules cm−3). The presence of water clusters exhibits a dramatic catalytic effect in the CH2OO reaction with bimolecular water as it lowers the energy barrier by 4.0 kcal mol−1. The relative reaction rates, which are determined at temperatures from 273 to 323 K and 85 % relative humidity, reveal that the most favourable pathway for the atmospheric removal of CH2OO is indeed via its reaction with bimolecular water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Smith MC, Chang CH, Chao W, Lin LC, Takahashi K, Boering KA, Lin JJM (2015) J Phys Chem Lett 6:2708

    Article  CAS  Google Scholar 

  2. Nguyen TN, Putikam R, Lin MC (2015) J Chem Phys 142:124312

    Article  Google Scholar 

  3. Vereecken L, Harder H, Novelli A (2012) Phys Chem Chem Phys 14:14682

    Article  CAS  Google Scholar 

  4. Criegee R, Wenner G (1949) Chem Ber 82:9

    Google Scholar 

  5. Su YT, Huang YH, Witek HA, Lee YP (2013) Science 340:174

    Article  CAS  Google Scholar 

  6. Anglada JM, González J, Torrent-Sucarrat M (2011) Phys Chem Chem Phys 13:13034

    Article  CAS  Google Scholar 

  7. Li J, Carter S, Bowman JM, Dawes R, Xie DQ, Guo H (2014) J Phys Chem Lett 5:2364

    Article  CAS  Google Scholar 

  8. Li J, Guo H (2015) J Phys Chem A. doi:10.1021/acs.jpca.5b08491

    Google Scholar 

  9. Kuwata KT, Guinn EJ, Hermes MR, Fernandez JA, Mathison JM, Huang K (2015) J Phys Chem A 119:10316

    Article  CAS  Google Scholar 

  10. Stone D, Blitz M, Daubney L, Howes NUM, Seakins P (2014) Phys Chem Chem Phys 16:1139

    Article  CAS  Google Scholar 

  11. Berndt T, Kaethner R, Voigtländer J, Stratmann F, Pfeifle M, Reichle P, Sipilä M, Kulmala M, Olzmann M (2015) Phys Chem Chem Phys 17:19862

    Article  CAS  Google Scholar 

  12. Berndt T, Voigtländer J, Stratmann F, Junninen H, Mauldin IIIRL, Sipilä M, Kulmala M, Herrmann H (2014) Phys Chem Chem Phys 16:19130

    Article  CAS  Google Scholar 

  13. Long B, Tan XF, Long ZW, Wang YB, Ren DS, Zhang WJ (2011) J Phys Chem A 115:6559

    Article  CAS  Google Scholar 

  14. Welz O, Savee JD, Osborn DL, Vasu SS, Percival CJ, Shallcross DE, Taatjes CA (2012) Science 335:204

    Article  CAS  Google Scholar 

  15. Ouyang B, McLeod MW, Jones RL, Bloss WJ (2013) Phys Chem Chem Phys 15:17070

    Article  CAS  Google Scholar 

  16. Zhang WC, Du BN, Qin ZL (2014) J Phys Chem A 118:4797

    Article  CAS  Google Scholar 

  17. Zhang TL, Wang R, Chen H, Min ST, Wang ZY, Zhao CB, Xu Q, Jin LX, Wang WL, Wang ZQ (2015) Phys Chem Chem Phys 17:15046

    Article  CAS  Google Scholar 

  18. Ryzhkov AB, Ariya PA (2004) Phys Chem Chem Phys 6:5042

    Article  CAS  Google Scholar 

  19. Inaba S (2014) J Phys Chem A 118:3026

    Article  CAS  Google Scholar 

  20. Ryzhkov AB, Ariya PA (2006) Chem Phys Lett 419:479

    Article  CAS  Google Scholar 

  21. Chao W, Hsieh JT, Chang CH, Lin JJM (2015) Science 347:751

    Article  CAS  Google Scholar 

  22. Lewis TR, Blitz MA, Heard DE, Seakins PW (2015) Phys Chem Chem Phys 17:4859

    Article  CAS  Google Scholar 

  23. Frisch MJ et al (2009) Gaussian 09, revision C.01. Gaussian Inc, Wallingford, CT

  24. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101

    Article  Google Scholar 

  25. Zheng JJ, Truhlar DG (2009) J Phys Chem A 113:11919

    Article  CAS  Google Scholar 

  26. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  27. Miliordos E, Xantheas SS (2016) Angew Chem 128:1027

    Article  Google Scholar 

  28. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154

    Article  CAS  Google Scholar 

  29. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523

    Article  CAS  Google Scholar 

  30. Fukui K (1981) Acc Chem Res 14:363

    Article  CAS  Google Scholar 

  31. Page M, Mclver JW (1988) J Chem Phys 88:922

    Article  CAS  Google Scholar 

  32. Mendes J, Zhou CW, Curran HJ (2013) J Phys Chem A 117:4515

    Article  CAS  Google Scholar 

  33. Mendes J, Zhou CW, Curran HJ (2013) J Phys Chem A 117:14006

    Article  CAS  Google Scholar 

  34. Eckart C (1930) Phys Rev 35:1303

    Article  CAS  Google Scholar 

  35. Johnston HS, Heicklen J (1962) J Phys Chem 66:532

    Article  Google Scholar 

  36. Garrett BC, Truhlar DG (1979) J Phys Chem 83:2921

    Article  CAS  Google Scholar 

  37. Duncan WT, Bell RL, Truong TN (1998) J Comput Chem 19:1039

    Article  CAS  Google Scholar 

  38. Zhang TL, Wang WL, Zhang P, Lü J, Zhang Y (2011) Phys Chem Chem Phys 13:20794

    Article  CAS  Google Scholar 

  39. McCarthy MC, Cheng L, Crabtree KN, Martinez O, Nguyen TL, Womack CC, Stanton JF (2013) J Phys Chem Lett 4:4133

    Article  CAS  Google Scholar 

  40. Nakajima M, Endo Y (2013) J Chem Phys 139:101103

    Article  Google Scholar 

  41. Chen L, Wang WL, Wang WN, Liu YL, Liu FY, Liu N, Wang BZ (2016) Theor Chem Acc 135:131

    Article  Google Scholar 

  42. Crehuet R, Anglada JM, Bofill JM (2001) Chem Eur J 7:2227

    Article  CAS  Google Scholar 

  43. Lin LC, Chang HT, Chang CH, Chao W, Smith MC, Chang CH, Lin JJM, Takahashi K (2016) Phys Chem Chem Phys 18:4557

    Article  CAS  Google Scholar 

  44. Liu JJ, Fang S, Bing Q, Tao FM, Liu JY (2016) Comput Theor Chem 1076:11

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No: 21473108, 21473107), Shaanxi Innovative Team of Key Science and Technology (2013KCT-17) and the Fundamental Research Funds for the Central Universities (GK201601005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenliang Wang or Jian Lü.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 21753 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Wang, W., Zhou, L. et al. Role of water clusters in the reaction of the simplest Criegee intermediate CH2OO with water vapour. Theor Chem Acc 135, 252 (2016). https://doi.org/10.1007/s00214-016-1998-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1998-2

Keywords

Navigation