Skip to main content
Log in

Ground-to-excited derivative couplings for the density functional-based tight-binding method: semi-local and long-range corrected formulations

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A derivation of non-adiabatic coupling vectors for the density functional-based tight-binding method (DFTB) between ground and excited states is presented. The analytical result is valid both for semi-local and long-range corrected DFTB and includes all required Pulay terms. Electron-translation factors lead to a conceptual simplification of the Slater-Koster scheme for precomputed integrals. Compared to scalar couplings obtained from numerical derivatives, the present approach is computationally more efficient and can be applied to systems with hundreds of atoms. The accuracy of DFTB derivative couplings is assessed by comparison to full density functional theory (DFT) calculations using semi-local and hybrid exchange-correlation functionals with promising results. As exemplified by a case study of furan, DFTB provides non-adiabatic coupling vectors that are close to DFT counterparts in size and direction also in the vicinity of conical intersections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Persico M, Granucci G (2018) Photochemistry: a modern theoretical perspective. Springer

  2. Nelson TR, White AJ, Bjorgaard JA, Sifain AE, Zhang Y, Nebgen B, Fernandez-Alberti S, Mozyrsky D, Roitberg AE, Tretiak S (2020) Chem Rev 120(4):2215

    Article  CAS  PubMed  Google Scholar 

  3. Ullrich C (2012) Time-dependent density-functional theory: concepts and applications. Oxford University Press, USA

    Google Scholar 

  4. Tully JC (1990) J Chem Phys 93(2):1061

    Article  CAS  Google Scholar 

  5. Seifert G, Eschrig H, Bieger W, Phys Z (1986) Chem (Leipzig) 267:529

    CAS  Google Scholar 

  6. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Phys Rev B 58(11):7260

    Article  CAS  Google Scholar 

  7. Frauenheim T, Seifert G, Elstner M, Niehaus T, Köhler C, Amkreutz M, Sternberg M, Hajnal Z, Di Carlo A, Suhai S (2002) J Phys Cond Matter 14(11):3015

    Article  CAS  Google Scholar 

  8. Niehaus TA, Suhai S, Della Sala F, Lugli P, Elstner M, Seifert G, Frauenheim T (2001) Phys Rev B 63(8)

  9. Niehaus TA (2009) J Mol Struct THEOCHEM 914:38

    Article  CAS  Google Scholar 

  10. Torralva B, Niehaus TA, Elstner M, Suhai S, Frauenheim T, Allen RE (2001) Phys Rev B 6415(15)

  11. Niehaus TA, Heringer D, Torralva B, Frauenheim T (2005) Eur Phys J D 35(3):467

    Article  CAS  Google Scholar 

  12. Mitric R, Werner U, Wohlgemuth M, Seifert G, Bonacic-Kouteckỳ V (2009) J Phys Chem A 113:12700

    Article  CAS  PubMed  Google Scholar 

  13. Gao X, Peng Q, Niu Y, Wang D, Shuai Z (2012) Phys Chem Chem Phys 14(41):14207

    Article  CAS  PubMed  Google Scholar 

  14. Stojanovic L, Aziz SG, Hilal RH, Plasser F, Niehaus TA, Barbatti M (2017) J Chem Theory Comput 13(12):5846

    Article  CAS  PubMed  Google Scholar 

  15. Bonafé FP, Aradi B, Guan M, Douglas-Gallardo OA, Lian C, Meng S, Frauenheim T, Sánchez CG (2017) Nanoscale 9(34):12391

    Article  PubMed  Google Scholar 

  16. Humeniuk A, Mitric R (2017) Comput Phys Commun 221:174

    Article  CAS  Google Scholar 

  17. Uratani H, Nakai H (2020) J Chem Phys 152(22)

  18. Chernyak V, Mukamel S (2000) J Chem Phys 112(8):3572

    Article  CAS  Google Scholar 

  19. Baer R (2002) Chem Phys Lett 364(1–2):75

    Article  CAS  Google Scholar 

  20. Tapavicza E, Tavernelli I, Rothlisberger U (2007) Phys Rev Lett 98(2)

  21. Hu C, Hirai H, Sugino O (2007) J Chem Phys 127(6)

  22. Hu C, Hirai H, Sugino O (2008) J Chem Phys 128(15)

  23. Tavernelli I, Tapavicza E, Rothlisberger U (2009) J Chem Phys 130(12)

  24. Hu C, Sugino O, Tateyama Y (2009) J Chem Phys 131(11)

  25. Send R, Furche F (2010) J Chem Phys 132(4)

  26. Li Z, Suo B, Liu W (2014) J Chem Phys 141(24)

  27. Ou Q, Bellchambers GD, Furche F, Subotnik JE (2015) J Chem Phys 142(6)

  28. Zhang X, Herbert JM (2015) J Chem Phys 142(6)

  29. Parker SM, Roy S, Furche F (2019) Phys Chem Chem Phys 21(35):18999

    Article  CAS  PubMed  Google Scholar 

  30. Humeniuk A, Mitrić R (2019) arXiv e-prints. arXiv:1908.00276

  31. Pittner J, Lischka H, Barbatti M (2009) Chem Phys 356(1):147

    Article  CAS  Google Scholar 

  32. Alonso-Jordá P, Davidović D, Sapunar M, Herrero JR, Quintana-Ortí ES (2021) Comput Phys Commun 258

  33. Werner U, Mitrić R, Suzuki T, Bonačić-Kouteckỳ V (2008) Chem Phys 349(1–3):319

    Article  CAS  Google Scholar 

  34. Coker DF, Xiao L (1995) J Chem Phys 102(1):496

    Article  CAS  Google Scholar 

  35. Herman MF (1984) J Chem Phys 81(2):754

    Article  CAS  Google Scholar 

  36. Carof A, Giannini S, Blumberger J (2017) J Chem Phys 147(21)

  37. Plasser F, Mai S, Fumanal M, Gindensperger E, Daniel C, González L (2019) J Chem Theory Comput 15(9):5031

    Article  CAS  PubMed  Google Scholar 

  38. Parker SM, Roy S, Furche F (2016) J Chem Phys 145(13)

  39. Niehaus T, Della Sala F (2012) Physica status solidi (b) 249:237

  40. Lutsker V, Aradi B, Niehaus TA (2015) J Chem Phys 143(18)

  41. Elstner M, Seifert G (2014) Philos Trans R Soc A 372(2011):20120483

    Article  Google Scholar 

  42. Gaus M, Cui Q, Elstner M (2011) J Chem Theory Comput 7(4):931

    Article  CAS  Google Scholar 

  43. Nishimoto Y (2015) J Chem Phys 143(9)

  44. Casida ME (1995) Recent advances in density functional methods, Part I (World Scientific, Singapore, 1995), chap. Time-dependent Density Functional Response Theory for Molecules, pp 155–192

  45. Furche F, Ahlrichs R (2002) J Chem Phys 117(16):7433

    Article  CAS  Google Scholar 

  46. Hirata S, Head-Gordon M (1999) Chem Phys Lett 314(3):291

    Article  CAS  Google Scholar 

  47. Casida ME, Gutierrez F, Guan JG, Gadea FX, Salahub D, Daudey JP (2000) J Chem Phys 113(17):7062

    Article  CAS  Google Scholar 

  48. Huix-Rotllant M, Natarajan B, Ipatov A, Wawire CM, Deutsch T, Casida ME (2010) Phys Chem Chem Phys 12(39):12811

    Article  CAS  PubMed  Google Scholar 

  49. Peach MJ, Warner N, Tozer DJ (2013) Mol Phys 111(9–11):1271

    Article  CAS  Google Scholar 

  50. Kranz JJ, Elstner M, Aradi B, Frauenheim T, Lutsker V, Garcia AD, Niehaus TA (2017) J Chem Theory Comput 13(4):1737

    Article  CAS  PubMed  Google Scholar 

  51. Stratmann RE, Scuseria GE, Frisch MJ (1998) J Chem Phys 109(19):8218

    Article  CAS  Google Scholar 

  52. Deglmann P, Furche F, Ahlrichs R (2002) Chem Phys Lett 362(5–6):511

    Article  CAS  Google Scholar 

  53. Slater JC, Koster GF (1954) Phys Rev 94(6):1498

    Article  CAS  Google Scholar 

  54. Fatehi S, Alguire E, Shao Y, Subotnik JE (2011) J Chem Phys 135(23)

  55. Heringer D, Niehaus TA, Wanko M, Frauenheim T (2007) J Comp Chem 28(16):2589

  56. Heringer D, Niehaus TA, Wanko M, Frauenheim T (2012) J Comp Chem 33(16):593

    Article  CAS  Google Scholar 

  57. ...Hourahine B, Aradi B, Blum V, Bonafé F, Buccheri A, Camacho C, Cevallos C, Deshaye MY, Dumitrică T, Dominguez A, Ehlert S, Elstner M, van der Heide T, Hermann J, Irle S, Kranz JJ, Köhler C, Kowalczyk T, Kubař T, Lee IS, Lutsker V, Maurer RJ, Min SK, Mitchell I, Negre C, Niehaus TA, Niklasson AMN, Page AJ, Pecchia A, Penazzi G, Persson MP, Řezáč J, Sánchez CG, Sternberg M, Stöhr M, Stuckenberg F, Tkatchenko A, Yu VWZ, Frauenheim T (2020) J Chem Phys 152(12):124101

  58. Tommasini M, Chernyak V, Mukamel S (2001) Int J Quantum Chem 85(4–5):225

    Article  CAS  Google Scholar 

  59. Niehaus TA, Elstner M, Frauenheim T, Suhai S (2001) J Mol Struct Theochem 541:185

    Article  CAS  Google Scholar 

  60. Jacquemin D, Wathelet V, Perpete EA, Adamo C (2009) J Chem Theory Comput 5(9):2420

    Article  CAS  PubMed  Google Scholar 

  61. Huix-Rotllant M, Ferré N, Barbatti M (2020) Time-dependent density functional theory. John Wiley & Sons, p 15

  62. Liu Y, Knopp G, Qin C, Gerber T (2015) Chem Phys 446:142

    Article  CAS  Google Scholar 

  63. Hua W, Oesterling S, Biggs JD, Zhang Y, Ando H, de Vivie-Riedle R, Fingerhut BP, Mukamel S (2016) Struct Dyn 3(2)

  64. Adachi S, Schatteburg T, Humeniuk A, Mitrić R, Suzuki T (2019) Phys Chem Chem Phys 21(26):13902

    Article  CAS  PubMed  Google Scholar 

  65. Serrano-Andres L, Merchan M, Nebot-Gil I, Roos BO, Fulscher M (1993) J Am Chem Soc 115(14):6184

    Article  CAS  Google Scholar 

  66. Palmer MH, Walker IC, Ballard CC, Guest MF (1995) Chem Phys 192(2):111

    Article  CAS  Google Scholar 

  67. Burcl R, Amos RD, Handy NC (2002) Chem Phys Lett 355(1–2):8

    Article  CAS  Google Scholar 

  68. Gromov E, Trofimov A, Vitkovskaya N, Schirmer J, Köppel H (2003) J Chem Phys 119(2):737

    Article  CAS  Google Scholar 

  69. Gavrilov N, Salzmann S, Marian CM (2008) Chem Phys 349(1–3):269

    Article  CAS  Google Scholar 

  70. Stenrup M, Larson Å (2011) Chem Phys 379(1–3):6

    Article  CAS  Google Scholar 

  71. Bearpark MJ, Robb MA, Schlegel HB (1994) Chem Phys Lett 223(3):269

    Article  CAS  Google Scholar 

  72. Harabuchi Y, Hatanaka M, Maeda S (2019) Chem Phys Lett X 2

  73. Levine BG, Ko C, Quenneville J, MartÍnez TJ (2006) Mol Phys 104(5–7):1039

    Article  CAS  Google Scholar 

  74. Meng S, Kaxiras E (2008) J Chem Phys 129(5)

  75. Meng S, Ren J, Kaxiras E (2008) Nano Lett 8(10):3266

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support by the Laboratoire d’Excellence iMUST is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Niehaus.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dedicated to Dr. Fernand Spiegelman on the occasion of his retirement.

Published as part of the special collection of articles “Festschrift in honor of Fernand Spiegelmann”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niehaus, T.A. Ground-to-excited derivative couplings for the density functional-based tight-binding method: semi-local and long-range corrected formulations. Theor Chem Acc 140, 34 (2021). https://doi.org/10.1007/s00214-021-02735-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02735-y

Keywords

Navigation