Skip to main content
Log in

The common trends for the halogen, chalcogen, and pnictogen bonds via sorting principles and local bonding properties

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We disclose the common trends for relationships between the binding energy and the local electronic properties at the bond critical points of electron density for the halogen, chalcogen, and pnictogen bonds in molecular complexes. Variations in the sorting principles for noncovalent bonds in which the electrophilic site delivered by the P, As, S, Se, Cl, Br atoms are studied. Electronic kinetic and potential energy densities give regularly changing parameters in the single-factor models «binding energy versus local electronic property» only if a sort of electrophilic site provider is fixed. In contrast, the electrostatic potential and the potential acting on an electron in a molecule lead to the common trends only if the nucleophilic molecule is fixed. The behavior of parameters in the single-factor models was also studied under the different sorting principles of noncovalent bonds in samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bader RFW (1990) Atoms in molecules. A quantum theory. Oxford University Press, New York

    Google Scholar 

  2. Bader RFW, Essen H (1984) The characterization of atomic interactions. J Chem Phys 80:1943–1960

    Article  CAS  Google Scholar 

  3. Cremer D, Kraka E (1984) A description of the chemical bond in terms of local properties of electron density and energy. Croat Chem Acta 57:1259–1281

    Google Scholar 

  4. Cioslowski J, Mixon ST (1991) Covalent bond orders in the topological theory of atoms in molecules. J Am Chem Soc 113:4142–4145

    Article  CAS  Google Scholar 

  5. Tsirelson VG, Bartashevich EV, Stash AI, Potemkin VA (2007) Determination of covalent bond orders and atomic valence indices using topological features of the experimental electron density. Acta Crystallogr 63B:142–150

    Article  CAS  Google Scholar 

  6. O’Brien SE, Popelier PLA (1999) Quantum molecular similarity. Part 2: the relation between properties in BCP space and bond length. Can J Chem 77:28–36

    Article  Google Scholar 

  7. O’Brien SE, Popelier PLA (2001) Quantum molecular similarity. 3. QTMS descriptors. J Chem Inform Comput Sci 41:764–775

    Article  CAS  Google Scholar 

  8. Popelier PLA (2016) In: Mingos M (ed) The chemical bond—100 years old and getting stronger. Springer, Cham

    Google Scholar 

  9. Matta CF (2014) Modeling biophysical and biological properties from the characteristics of the molecular electron density, electron localization and delocalization matrices, and the electrostatic potential. J Comput Chem 35:1165–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boyd RJ, Choi SC (1986) Hydrogen bonding between nitriles and hydrogen halides and the topological properties of molecular charge distributions. Chem Phys Lett 129:62–65

    Article  CAS  Google Scholar 

  11. Spackman MA (1986) A simple quantitative model of hydrogen bonding. J Chem Phys 85:6587–6600

    Article  CAS  Google Scholar 

  12. Espinosa E, Lecomte ME (1998) C Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett 285:170–173

    Article  CAS  Google Scholar 

  13. Mata I, Molins E, Alkorta I, Espinosa E (2009) Effect of an external electric field on the dissociation energy and the electron density properties: the case of the hydrogen bonded dimer HF···HF. J Chem Phys 130:044104

    Article  PubMed  CAS  Google Scholar 

  14. Mata I, Alkorta I, Espinosa E, Molins E (2011) Relationships between interaction energy, intermolecular distance and electron density properties in hydrogen bonded complexes under external electric fields. Chem Phys Lett 507:185–189

    Article  CAS  Google Scholar 

  15. Espinosa E, Alkorta I, Elguero J, Molins E (2002) From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-HF–Y systems. J Chem Phys 117:5529–5542

    Article  CAS  Google Scholar 

  16. Parthasarathi R, Subramanian V, Sathyamurthy N (2006) hydrogen bonding without borders: an atoms-in-molecules perspective. J Phys Chem A 110:3349–3351

    Article  CAS  PubMed  Google Scholar 

  17. Vener MV, Egorova AN, Churakov AV, Tsirelson VG (2012) Intermolecular hydrogen bond energies in crystals evaluated using electron density properties: DFT computations with periodic boundary conditions. J Comput Chem 33:2303–2309

    Article  CAS  PubMed  Google Scholar 

  18. Levina EO, Chernyshov IY, Voronin AP, Alekseiko LN, Stash AI, Vener MV (2019) Solving the enigma of weak fluorine contacts in the solid state: a periodic DFT study of fluorinated organic crystals. RSC Adv 9:12520–12537

    Article  CAS  Google Scholar 

  19. Bushmarinov IS, Lyssenko KA, Antipin MY (2009) Atomic energy in the ‘Atoms in Molecules’ theory and its use for solving chemical problems. Russ Chem Rev 78:283–302

    Article  CAS  Google Scholar 

  20. Lyssenko KA (2012) Analysis of supramolecular architectures: beyond molecular packing diagrams. Mendeleev Commun 22:1–7

    Article  CAS  Google Scholar 

  21. Ivanov DM, Novikov AS, Ananyev IV, Kirina YV, Kukushkin VY (2016) Halogen bonding between metal centers and halocarbons. Chem Commun 52:5565–5568

    Article  CAS  Google Scholar 

  22. Bartashevich EV, Tsirelson VG (2014) Interplay between non-covalent interactions in complexes and crystals with halogen bonds. Russ Chem Rev 83:1181–1203

    Article  CAS  Google Scholar 

  23. Munchi P, Guru Row TN (2005) Charge density based classification of intermolecular interactions in molecular crystals. CrystEngComm 7:608–611

    Article  CAS  Google Scholar 

  24. Spackman MA (2015) How reliable are intermolecular interaction energies estimated from topological analysis of experimental electron densities? Cryst Growth Des 15:5624–5628

    Article  CAS  Google Scholar 

  25. Mata I, Alkorta I, Molins E, Espinosa E (2010) Universal features of the electron density distribution in hydrogen-bonding regions: a comprehensive study involving H···X (X = H, C, N, O, F, S, Cl, π) interactions. Chem Eur J 16:2442–2452

    Article  CAS  PubMed  Google Scholar 

  26. Ananyev IV, Karnoukhov VA, Dmitrienko AO, Lyssenko KA (2017) Toward a rigorous definition of a strength of any interaction between bader’s atomic basins. J Phys Chem A 121:4517–4522

    Article  CAS  PubMed  Google Scholar 

  27. Romanova A, Lyssenko K, Ananyev I (2018) Estimations of energy of noncovalent bonding from integrals over interatomic zero-flux surfaces: correlation trends and beyond. J Comput Chem 39:1607–1616

    Article  CAS  PubMed  Google Scholar 

  28. Bartashevich EV, Troitskaya EA, Martin Pendas A, Tsirelson VG (2015) Understanding the bifurcated halogen bonding N···Hal···N in bidentate diazaheterocyclic compounds. Comput Theor Chem 1053:229–237

    Article  CAS  Google Scholar 

  29. Khrenova MG, Nemukhin AV, Tsirelson VG (2019) Origin of the π-stacking induced shifts in absorption spectral bands of the green fluorescent protein chromophore. Chem Phys 522:32–38

    Article  CAS  Google Scholar 

  30. Desiraju GR, Ho PS, Kloo L, Legon AC, Marquardt R, Metrangolo P, Politzer P, Resnati G, Rissanen K (2013) Definition of the halogen bond (IUPAC Recommendations 2013). Pure Appl Chem 85:1711–1713

    Article  CAS  Google Scholar 

  31. Kuznetsov ML (2019) Relationships between interaction energy and electron density properties for homo halogen bonds of the (A)nY–X···X–Z(B)m. Type (X = Cl, Br, I). Molecules 24:2733

    Article  CAS  PubMed Central  Google Scholar 

  32. Kuznetsov ML (2018) Can halogen bond energy be reliably estimated from electron density properties at bond critical point? The case of the (A)nZ Y···X − (X, Y = F, Cl, Br) interactions. Int J Quantum Chem 119:e25869

    Article  CAS  Google Scholar 

  33. Terraneo G, Resnati G (2017) Bonding matters. Cryst Growth Des 17:1439–1440

    Article  CAS  Google Scholar 

  34. Legon AC (2017) Tetrel, pnictogen and chalcogen bonds identified in the gas phase before they had names: a systematic look at non-covalent interactions. Phys Chem Chem Phys 19:14884–14896

    Article  CAS  PubMed  Google Scholar 

  35. Politzer P, Murray JS, Clark T (2010) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12:7748–7757

    Article  CAS  PubMed  Google Scholar 

  36. Politzer P, Murray JS (2002) The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor Chem Acc 108:134–142

    Article  CAS  Google Scholar 

  37. Politzer P, Murray JS (2019) A look at bonds and bonding. Struct Chem 30:1153–1157

    Article  CAS  Google Scholar 

  38. Murray JS, Politzer P (2009) Molecular surfaces, van der Waals radii and electrostatic potentials. Croat Chem Acta 82:267–275

    CAS  Google Scholar 

  39. Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16:1679–1691

    Article  CAS  PubMed  Google Scholar 

  40. Bartashevich EV, Tsirelson VG (2013) Atomic dipole polarization in charge-transfer complexes with halogen bonding. Phys Chem Chem Phys 15:2530–2538

    Article  CAS  PubMed  Google Scholar 

  41. Wang Y, Li X, Zeng Y, Meng L, Zhang X (2017) Theoretical insights into the π-hole interactions in the complexes containing tri-phosphorus hydride (P3H3) and its derivatives. Acta Crystallogr B 73:195–202

    Article  CAS  Google Scholar 

  42. Wu J, Yan H, Zhong A, Chen H, Jin Y, Dai G (2019) Theoretical and conceptual DFT study of pnictogen- and halogen-bonded complexes of PH2X–BrCl. J Mol Model 25:28

    Article  PubMed  CAS  Google Scholar 

  43. Alkorta I, Legon A (2017) Nucleophilicities of Lewis bases B and electrophilicities of Lewis Acids A determined from the dissociation energies of complexes B···A involving hydrogen bonds, tetrel bonds, pnictogen bonds, chalcogen bonds and halogen bonds. Molecules 22:1786

    Article  PubMed Central  CAS  Google Scholar 

  44. Zhao D-X, Gong L-D, Yang Z-Z (2002) Theoretical study on the potential felt by a single electron within a molecule. Chin Sci Bull 47:635–640

    Article  Google Scholar 

  45. Zhao D-X, Yang Z-Z (2014) Investigation of the distinction between van der Waals interaction and chemical bonding based on the PAEM-MO diagram. J Comput Chem 35:965–977

    Article  CAS  PubMed  Google Scholar 

  46. Bartashevich EV, Tsirelson VG (2018) A comparative view on the potential acting on an electron in a molecule and the electrostatic potential through the typical halogen bonds. J Comput Chem 39:573–580

    Article  CAS  PubMed  Google Scholar 

  47. Granovsky AA (2016) Firefly, Version 8.2.0

  48. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  49. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian09. Gaussian Inc., Wallingford

    Google Scholar 

  50. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  51. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  52. Woon DE, Dunning TH Jr (1993) Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J Chem Phys 98:1358

    Article  CAS  Google Scholar 

  53. Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  54. Wilson AK, Woon DE, Peterson KA, Dunning TH Jr (1999) Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton. J Chem Phys 110:7667–7676

    Article  CAS  Google Scholar 

  55. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  56. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter Mater Phys 37:785–789

    Article  CAS  Google Scholar 

  57. Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) Basis set exchange: a community database for computational sciences. J Chem Inf Model 47:1045–1052

    Article  CAS  PubMed  Google Scholar 

  58. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  PubMed  CAS  Google Scholar 

  59. Neese F (2012) The ORCA program system. WIREs Comput Mol Sci 2:73–78

    Article  CAS  Google Scholar 

  60. Oliveira V, Kraka E, Cremer D (2016) The intrinsic strength of the halogen bond: electrostatic and covalent contributions described by coupled cluster theory. Phys Chem Chem Phys 18:33031

    Article  CAS  PubMed  Google Scholar 

  61. Oliveira V, Kraka E (2017) Systematic coupled cluster study of noncovalent interactions involving halogens, chalcogens, and pnicogens. J Phys Chem A 121:9544–9556

    Article  CAS  PubMed  Google Scholar 

  62. Legon AC (1999) Prereactive complexes of dihalogens XY with Lewis bases B in the gas phase: a systematic case for the halogen analogue B···XY of the hydrogen bond B···HX. Angew Chem Int Ed 38:2686–2714

    Article  CAS  Google Scholar 

  63. Legon AC, Thumwood JMA, Waclawik ER (2002) The interaction of water and dibromine in the gas phase: an investigation of the complex H2O···Br2 by rotational spectroscopy and ab initio calculations. Chem Eur J 8:940–950

    Article  CAS  PubMed  Google Scholar 

  64. Keith TA (2017) AIMAll, Version 17.11.14, Professional

  65. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  PubMed  CAS  Google Scholar 

  66. Müller AMK (1984) Explicit approximate relation between reduced two- and one-particle density matrices. Phys Lett 105A:446–452

    Article  Google Scholar 

  67. (2018) Statistica, Version 13, TIBCO Software Inc

  68. Bartashevich EV, Nasibullina SE, Bol’shakov OI, Tsirelson VG (2015) Exploring heterocyclic cations ability to form the iodide–iodine halogen bond: case study of chalcogenazolo(ino)quinolinium crystals. Struct Chem 27:305–313

    Article  CAS  Google Scholar 

  69. Legon AC (2010) The halogen bond: an interim perspective. Phys Chem Chem Phys 12:7736–7747

    Article  CAS  PubMed  Google Scholar 

  70. Legon AC (2014) A reduced radial potential energy function for the halogen bond and the hydrogen bond in complexes B···XY and B···HX, where X and Y are halogen atoms. Phys Chem Chem Phys 16:12415–12421

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the Russian Foundation for Basic Research, Grant No. 17-03-00406, the Ministry of Science and Higher Education of the Russian Federation (4.1157.2017/4.6), and the Government of the Russian Federation, Act 211, Contract No. 02.A03.21.0011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina V. Bartashevich.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles derived from the Chemical Concepts from Theory and Computation.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1888 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartashevich, E.V., Matveychuk, Y.V., Mukhitdinova, S.E. et al. The common trends for the halogen, chalcogen, and pnictogen bonds via sorting principles and local bonding properties. Theor Chem Acc 139, 26 (2020). https://doi.org/10.1007/s00214-019-2534-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-019-2534-y

Keywords

Navigation