Skip to main content
Log in

Stability constants of Cu(II)/indomethacin mononuclear complexes in solution

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The stability constants of the non-steroidal anti-inflammatory drug indomethacin mononuclear copper complexes, Cu(Indo)+ and Cu(Indo)2, were calculated by thermodynamic cycles in the frame of density functional theory. The BH&HLYP functional with LANL2DZ and Def2SVP basis set for copper ion and lighter atoms, respectively, were used to perform the search of minimums, and to consider thermal corrections in gas phase. For the minimums found, electronic energies were evaluated by performing single point calculations, using the basis set LANL2TZ+f for copper ion and the 6-311++G(2d,2p) for the rest. To include the continuum contribution to the solvation energy, the solvation model based on density was applied. Cluster/continuum model yields acceptable results in predicting solvation energies of Cu(II) ion and proton with deviations of 4.2 and 4.7 kcal/mol at the worked level of theory. Cluster/continuum calculations of Cu(Indo)+ and Cu(Indo)2 complexes stability constants, reported as logβ, predict 1.65 and − 3.17 in water and 15.9 and 26.7 in ethanol. We also apply the ion-exchange thermodynamic cycle, which aims error cancelation through structural similarity between species in both sides of chemical reactions. Encouraging results are obtained for Cu(Indo)2 stability constant in ethanol, logβ = 16.37, differing just 2.32 units from the experimental value. Structural features and charge distribution, of the species involved in the complexation reaction, are discussed to rationalize the performing of thermodynamic cycles in predicting complexation stability constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 4
Scheme 5
Scheme 6
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tagliati CA, Kimura E, Nothenberg MS et al (1999) Pharmacokinetic profile and adverse gastric effect of zinc-piroxicam in rats. Gen Pharmacol 33:67–71. https://doi.org/10.1016/S0306-3623(98)00267-5

    Article  CAS  PubMed  Google Scholar 

  2. Weder JE, Dillon CT, Hambley TW et al (2002) Copper complexes of non-steroidal anti-inflammatory drugs: an opportunity yet to be realized. Coord Chem Rev 232:95–126. https://doi.org/10.1016/S0010-8545(02)00086-3

    Article  CAS  Google Scholar 

  3. Pantovic A, Bosnjak M, Arsikin K et al (2016) In vitro antiglioma action of indomethacin is mediated via AMP-activated protein kinase/mTOR complex 1 signalling pathway. Int J Biochem Cell Biol 83:84–96. https://doi.org/10.1016/j.biocel.2016.12.007

    Article  CAS  PubMed  Google Scholar 

  4. Brunelli C, Amici C, Angelini M et al (2012) The non-steroidal anti-inflammatory drug indomethacin activates the eIF2α kinase PKR, causing a translational block in human colorectal cancer cells. Biochem J 443:379–386. https://doi.org/10.1042/BJ20111236

    Article  CAS  PubMed  Google Scholar 

  5. Eli Y, Przedecki F, Levin G et al (2001) Comparative effects of indomethacin on cell proliferation and cell cycle progression in tumor cells grown in vitro and in vivo. Biochem Pharmacol 61:565–571

    Article  CAS  PubMed  Google Scholar 

  6. Hojka-Osinska A, Ziolo E, Rapak A (2012) Combined treatment with fenretinide and indomethacin induces AIF-mediated, non-classical cell death in human acute T-cell leukemia Jurkat cells. Biochem Biophys Res Commun 419:590–595. https://doi.org/10.1016/j.bbrc.2012.02.092

    Article  CAS  PubMed  Google Scholar 

  7. Morecki S, Yacovlev E, Gelfand Y et al (2000) Induction of antitumor immunity by indomethacin. Cancer Immunol Immunother 48:613–620

    Article  CAS  PubMed  Google Scholar 

  8. Jukić MK, Luetić AT, Skudar-Lukinović V et al (2010) The antimetastatic effect of macrophages restored by indomethacin: concomitant tumor immunity model. Coll Antropol 34:899–904

    PubMed  Google Scholar 

  9. Levin G, Kariv N, Khomiak E, Raz A (2000) Indomethacin inhibits the accumulation of tumor cells in mouse lungs and subsequent growth of lung metastases. Chemotherapy 46:429–437

    Article  CAS  PubMed  Google Scholar 

  10. Bigda J, Mysliwski A (1998) Indomethacin inhibits kidney metastasis in Bomirski melanoma-bearing hamsters, and modulates natural killer cytotoxic activity of tumor hosts in vivo and in vitro. Anticancer Res 18:3549–3554

    CAS  PubMed  Google Scholar 

  11. Crisponi G, Nurchi VM, Fanni D et al (2010) Copper-related diseases: from chemistry to molecular pathology. Coord Chem Rev 254:876–889. https://doi.org/10.1016/j.ccr.2009.12.018

    Article  CAS  Google Scholar 

  12. Bonin AM, Yáñez JA, Fukuda C et al (2010) Inhibition of experimental colorectal cancer and reduction in renal and gastrointestinal toxicities by copper-indomethacin in rats. Cancer Chemother Pharmacol 66:755–764. https://doi.org/10.1007/s00280-009-1220-5

    Article  CAS  PubMed  Google Scholar 

  13. Dillon CT, Hambley TW, Kennedy BJ et al (2003) Gastrointestinal toxicity, antiinflammatory activity, and superoxide dismutase activity of copper and zinc complexes of the antiinflammatory drug indomethacin. Chem Res Toxicol 16:28–37. https://doi.org/10.1021/tx020078o

    Article  CAS  PubMed  Google Scholar 

  14. Tarushi A, Raptopoulou CP, Psycharis V et al (2014) Structure and biological perspectives of Cu(II)-indomethacin complexes. J Inorg Biochem 140:185–198. https://doi.org/10.1016/j.jinorgbio.2014.07.006

    Article  CAS  PubMed  Google Scholar 

  15. Leggett DJ, McBryde WAE (1975) General computer program for the computation of stability constants from absorbance data. Anal Chem 47:1065–1070. https://doi.org/10.1021/ac60357a046

    Article  CAS  Google Scholar 

  16. Rodríguez-Laguna N, Reyes-García LI, Moya-Hernández R et al (2016) Chemical speciation of the system Cu(II)-indomethacin in ethanol and water by UV–Vis spectrophotometry. J Chem. https://doi.org/10.1155/2016/9804162

    Article  Google Scholar 

  17. Gutten O, Beššeová I, Rulíšek L (2011) Interaction of metal ions with biomolecular ligands: How accurate are calculated free energies associated with metal ion complexation? J Phys Chem A 115:11394–11402. https://doi.org/10.1021/jp205442p

    Article  CAS  PubMed  Google Scholar 

  18. Tomasi J, Persico M (1994) Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem Rev 94:2027–2094. https://doi.org/10.1021/cr00031a013

    Article  CAS  Google Scholar 

  19. Chipman DM (2003) Anion electric field is related to hydration energy. J Chem Phys 118:9937–9942. https://doi.org/10.1063/1.1572454

    Article  CAS  Google Scholar 

  20. Camaioni DM, Dupuis M, Bentley J (2003) Theoretical characterization of oxoanion, XO n m , solvation. J Phys Chem A 107:5778–5788. https://doi.org/10.1021/jp0343537

    Article  CAS  Google Scholar 

  21. Chipman DM, Chen F (2006) Cation electric field is related to hydration energy. J Chem Phys. https://doi.org/10.1063/1.2180784

    Article  PubMed  Google Scholar 

  22. Bryantsev VS, Diallo MS, Goddard WA III (2008) Calculation of solvation free energies of charged solutes using mixed cluster/continuum models. J Phys Chem B 112:9709–9719. https://doi.org/10.1021/jp802665d

    Article  CAS  PubMed  Google Scholar 

  23. Almerindo GI, Tondo DW, Pliego JR (2004) Ionization of organic acids in dimethyl sulfoxide solution: a theoretical Ab initio calculation of the pKa using a new parametrization of the polarizable continuum model. J Phys Chem A 108:166–171. https://doi.org/10.1021/jp0361071

    Article  CAS  Google Scholar 

  24. Mujika JI, Mercero JM, Lopez X (2003) A theoretical evaluation of the pKa for twisted amides using density functional theory and dielectric continuum methods. J Phys Chem A 107:6099–6107. https://doi.org/10.1021/jp035228y

    Article  CAS  Google Scholar 

  25. Lopez X, Schaefer M, Dejaegere A, Karplus M (2002) Theoretical evaluation of pKa in phosphoranes: implications for phosphate ester hydrolysis. J Am Chem Soc 124:5010–5018. https://doi.org/10.1021/ja011373i

    Article  CAS  PubMed  Google Scholar 

  26. Dong H, Du H, Qian X (2008) Theoretical prediction of pKa values for methacrylic acid oligomers using combined quantum mechanical and continuum solvation methods. J Phys Chem A 112:12687–12694

    Article  CAS  PubMed  Google Scholar 

  27. Ding F, Smith JM, Wang H (2009) First-principles calculation of pKa values for organic acids in nonaqueous solution. J Org Chem 74:2679–2691. https://doi.org/10.1021/jo802641r

    Article  CAS  PubMed  Google Scholar 

  28. Gómez-Bombarelli R, González-Pérez M, Pérez-Prior MT et al (2009) Computational study of the acid dissociation of esters and lactones. A case study of diketene. J Org Chem 74:4943–4948. https://doi.org/10.1021/jo900645h

    Article  CAS  PubMed  Google Scholar 

  29. Fu Y, Liu L, Li R-Q et al (2004) First-principle predictions of absolute pKa’s of organic acids in dimethyl sulfoxide solution. J Am Chem Soc 126:814–822. https://doi.org/10.1021/ja0378097

    Article  CAS  PubMed  Google Scholar 

  30. Namazian M, Kalantary-Fotooh F, Noorbala MR et al (2006) Møller-Plesset perturbation theory calculations of the pKa values for a range of carboxylic acids. J Mol Struct Theochem 758:275–278. https://doi.org/10.1016/j.theochem.2005.10.024

    Article  CAS  Google Scholar 

  31. Toth AM, Liptak MD, Phillips DL, Shields GC (2001) Accurate relative pKa calculations for carboxylic acids using complete basis set and Gaussian-n models combined with continuum solvation methods. J Chem Phys 114:4595–4606. https://doi.org/10.1063/1.1337862

    Article  CAS  Google Scholar 

  32. Caballero NA, Melendez FJ, Muñoz-Caro C, Niño A (2006) Theoretical prediction of relative and absolute pKa values of aminopyridines. Biophys Chem 124:155–160. https://doi.org/10.1016/j.bpc.2006.06.007

    Article  CAS  PubMed  Google Scholar 

  33. Magill AM, Cavell KJ, Yates BF (2004) Basicity of nucleophilic carbenes in aqueous and nonaqueous solvents—theoretical predictions. J Am Chem Soc 126:8717–8724. https://doi.org/10.1021/ja038973x

    Article  CAS  PubMed  Google Scholar 

  34. Takano Y, Houk KN (2005) Benchmarking the conductor-like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules. J Chem Theory Comput 1:70–77. https://doi.org/10.1021/ct049977a

    Article  CAS  PubMed  Google Scholar 

  35. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on the generalized born approximation with asymmetric descreening. J Chem Theory Comput 5:2447–2464. https://doi.org/10.1021/ct900312z

    Article  CAS  PubMed  Google Scholar 

  36. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  37. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  38. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372–1377. https://doi.org/10.1063/1.464304

    Article  CAS  Google Scholar 

  39. Galván-García EA, Agacino-Valdés E, Franco-Pérez M, Gómez-Balderas R (2017) [Cu(H2O)n]2+ (n = 1–6) complexes in solution phase: a DFT hierarchical study. Theor Chem Acc 136:29. https://doi.org/10.1007/s00214-017-2056-4

    Article  CAS  Google Scholar 

  40. Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622. https://doi.org/10.1103/PhysRev.46.618

    Article  Google Scholar 

  41. Rios-Font R, Sodupe M, Rodriguez-Santiago L, Taylor PR (2010) The role of exact exchange in the description of Cu2+–(H2O)n (n = 1–6) complexes by means of DFT methods. J Phys Chem A 114:10857–10863. https://doi.org/10.1021/jp105376s

    Article  CAS  PubMed  Google Scholar 

  42. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283. https://doi.org/10.1063/1.448799

    Article  CAS  Google Scholar 

  43. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310. https://doi.org/10.1063/1.448975

    Article  CAS  Google Scholar 

  44. Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284–298. https://doi.org/10.1063/1.448800

    Article  CAS  Google Scholar 

  45. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305. https://doi.org/10.1039/b508541a

    Article  CAS  PubMed  Google Scholar 

  46. Roy LE, Hay PE, Martin RL (2008) Revised Basis Sets for the LANL Effective Core Potentials. J Chem Theory Comput 4:1029–1031. https://doi.org/10.1021/ct8000409

    Article  CAS  PubMed  Google Scholar 

  47. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396. https://doi.org/10.1021/jp810292n

    Article  CAS  PubMed  Google Scholar 

  48. Gaussian 09, Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman, JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross, JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman, JB, Ortiz JV, Cioslowski J, Fox DJ. (2009) Gaussian Inc., Wallingford CT

  49. Dennington R, Keith T, Millam J (2009) GaussView, Version 5. Semichem Inc., Shawnee Mission. KS Semichem Inc

  50. Kelly CP, Cramer CJ, Truhlar DG (2005) SM6: a density functional theory continuum Solvation Model for calculating aqueous solvation free energies of neutrals, ions, and solute-water clusters. J Chem Theory Comput 1:1133–1152. https://doi.org/10.1021/ct050164b

    Article  CAS  PubMed  Google Scholar 

  51. Kelly CP, Cramer CJ, Truhlar DG (2006) Aqueous solvation free energies of ions and ion–water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. J Phys Chem B 110:16066–16081. https://doi.org/10.1021/jp063552y

    Article  CAS  PubMed  Google Scholar 

  52. Tissandier MD, Cowen KA, Feng WY et al (1998) The proton’s absolute aqueous enthalpy and gibbs free energy of solvation from cluster–ion solvation data. J Phys Chem A 102:7787–7794. https://doi.org/10.1021/jp982638r

    Article  CAS  Google Scholar 

  53. Camaioni DM, Schwerdtfeger CA (2005) Comment on “accurate experimental values for the free energies of hydration of H+, OH, and H3O+”. J Phys Chem A 109:10795–10797. https://doi.org/10.1021/jp054088k

    Article  CAS  PubMed  Google Scholar 

  54. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746. https://doi.org/10.1063/1.449486

    Article  CAS  Google Scholar 

  55. Kay BD, Castleman AW (1985) Molecular beam electric deflection study of the hydrogen-bonded water, methanol, and ethanol clusters (H2O)N, (CH3OH)N, and (C2H5OH)N. J Phys Chem 89:4867–4868. https://doi.org/10.1021/j100268a041

    Article  CAS  Google Scholar 

  56. Hu YJ, Fu HB, Bernstein ER (2006) Infrared plus vacuum ultraviolet spectroscopy of neutral and ionic ethanol monomers and clusters. J Chem Phys. doi 10(1063/1):2357952

    Google Scholar 

  57. Umer M, Kopp WA, Leonhard K (2015) Efficient yet accurate approximations for ab initio calculations of alcohol cluster thermochemistry. J Chem Phys. doi https://doi.org/10.1063/1.4936406

    Article  Google Scholar 

  58. Descroix S, Varenne A, Adamo C, Gareil P (2004) Capillary electrophoresis of inorganic anions in hydro-organic media: influence of ion-pairing and solvation phenomena. J Chromatogr A 1032:149–158. https://doi.org/10.1016/j.chroma.2003.11.070

    Article  CAS  PubMed  Google Scholar 

  59. Fini A, Fazio G, Feroci G (1995) Solubility and solubilization properties of non-steroidal anti-inflammatory drugs. Int J Pharm 126:95–102. https://doi.org/10.1016/0378-5173(95)04102-8

    Article  CAS  Google Scholar 

  60. Rappé AKK, Casewit CJJ, Colwell KSS et al (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035. https://doi.org/10.1021/ja00051a040

    Article  Google Scholar 

Download references

Acknowledgements

Raúl Flores acknowledges DGAPA-UNAM for the postdoctoral fellowship. LIR-G acknowledges to CONACyT for the PhD scholarship. The authors gratefully acknowledge the computing time granted by LANCAD and CONACYT on the supercomputer Yoltla/Miztli/Xiuhcoatl at LSVP UAM-Iztapalapa/DGTIC UNAM/CGSTIC CINVESTAV.

Funding

This work was supported by UNAM-PAPIIT IN218118, PIAPI1846-FESC-UNAM and LANCAD-UNAM-DGTIC-058.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Rodolfo Gómez-Balderas.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores, R., Reyes-García, L.I., Rodríguez-Laguna, N. et al. Stability constants of Cu(II)/indomethacin mononuclear complexes in solution. Theor Chem Acc 137, 125 (2018). https://doi.org/10.1007/s00214-018-2315-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2315-z

Keywords

Navigation