Skip to main content
Log in

Stability constants of Cu(II)-piroxicam complexes in solution: a DFT study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Knowledge of coordination modes of metal and pharmaceuticals are crucial for gaining understanding of the chemical mechanisms underlying their biological activity, in particular for systems where there is a synergism based on the fact that complexes can provide enhanced activity of the drug with fewer side effects. Quantum chemistry calculations represent a unique and complementary approach to experimental methods to understand the thermodynamics of reactions in terms of structural details of the participating species. Here, the coordination modes between Cu(II) and piroxicam and their stability constants were studied, by means of DFT molecular modeling, in gas phase and in solution (water and ethanol) at the RevTPSS/def-SVP and (SMD- and CPCM-RevTPSS)/def-SVP levels of theory, respectively. Octahedral bidentate geometries are found to be the more stable, likely due to the chelate effect. Thermodynamic results on the stability of the formed complexes revealed that complexation is favored in ethanol. The calculated logK s with the (SMD-RevTPSS)/def-SVP level of theory are in better agreement to the experimental values than (CPCM-RevTPSS)/def-SVP results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Page J, Henry D (2000) Consumption of NSAIDs and the development of congestive heart failure in elderly patients: an underrecognized public health problem. Arch Int Med 160:777–784

    Article  CAS  Google Scholar 

  2. McGeer PL, Schilzer M, McGeer EG (1996) Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease: a review of 17 epidemiologic studies. Neurology 47:425–432

    Article  CAS  Google Scholar 

  3. Sugaya K, Uz T, Kumar V, Manev H (2000) New anti-inflammatory treatment strategy in Alzheimer’s disease. Jpn J Pharmacol 82:85–94

    Article  CAS  Google Scholar 

  4. Jain AK (2008) Solubilization of indomethacin using hydrotropes for aqueous injection. Eur J Pharm Biopharm 68:701–714

    Article  CAS  Google Scholar 

  5. Williams PAM, Molinuevo MS, Okulik N, Jubert AH, Etcheverry S (2005) Synthesis, characterization and biological properties of vanadyl (IV) complexes of diclofenac and indomethacin: an experimental and theoretical study. Appl Organomet Chem 19:711–718

    Article  CAS  Google Scholar 

  6. McNally R (2001) Drug information for health care professional, 21st edn. USP–DI, Massachusetts

    Google Scholar 

  7. Moncada S, Vane JR (1979) Mode of action of aspirin-like drugs. Adv Int Med 24:1–22

    CAS  Google Scholar 

  8. Mamett LJ, Kalgutkar AS (1999) Cyclooxygenase 2 inhibitors: discovery, selectivity and the future. Trends Pharmacol Sci 20:465–469

    Article  Google Scholar 

  9. Weder JE, Dillon CT, Hambley TW, Kennedy BJ, Lay PA, Biffin JR, Regtop HL, Davies NM (2002) Copper complexes of non-steroidal anti-inflammatory drugs: an opportunity yet to be realized. Coord Chem Rev 232:95–126

    Article  CAS  Google Scholar 

  10. Christofis P, Katsarou M, Papakyriakou A, Sanakis Y, Katsaros N, Psomas G (2005) Mononuclear metal complexes with piroxicam: synthesis, structure and biological activity. J Inorg Biochem 99:2197–2210

    Article  CAS  Google Scholar 

  11. Ho J, Coote ML, Franco-Pérez M, Gómez-Balderas R (2010) First-principles prediction of the pKas of anti-inflammatory oxicams. J Phys Chem A 114:11992–12003

    Article  CAS  Google Scholar 

  12. Milanino R, Mauro U, Marrella M, Pasqualicchio M, Gaspe − Rini R, Velo G (1995) In: Berthon G (ed) Handbook of metal-ligand interactions in biological fluids. Marcel Decker, New York

    Google Scholar 

  13. Sorenson JRJ (1989) Copper complexes offer a physiological approach to treatment of chronic diseases. Prog Med Chem 26:437–568

    Article  CAS  Google Scholar 

  14. Tagliati CA, Kimura E, Nothenberg MS, Santos SRJC, Oga S (1999) Pharmacokinetic profile and adverse gastric effect of zinc-piroxicam in rats. Gen Pharmacol 33:67–71

    Article  CAS  Google Scholar 

  15. Samara CD, Tsotsou G, Ekateriniadou LV, Kortsaris AH, Raptopoulou CP, Terzis A, Kyriakidis DA, Kersissoglou DP (1998) Anti-inflammatory drugs interacting with Zn(II), Cd(II) and Pt(II) metal ions. J Inorg Biochem 71:171–179

    Article  Google Scholar 

  16. Rodríguez-Laguna N, Reyes-García LI, Moya-Hernández R, Rojas-Hernández A, Gómez-Balderas (2016) Chemical speciation of the system Cu(II)-indomethacin in ethanol and water by UV–Vis spectrophotometry. J Chem. doi:10.1155/2016/9804162

  17. Cini R, Giorgi G, Cinquantini A, Rossi C, Sabat M (1990) Metal complexes of the anti-inflammatory drug piroxicam. Inorg Chem 29:5197–5200

    Article  CAS  Google Scholar 

  18. Gehad GM, El-Gamel NEA (2004) Preparation and spectroscopic characterization of metal complexes of piroxicam. Vib Spectrosc 36:97–104

    Article  CAS  Google Scholar 

  19. Gehad GM (2005) Structural and thermal characterization of ternary complexes of piroxicam and alanine with transition metals: uranyl binary and ternary complexes of piroxicam Spectroscopic characterization and properties of metal complexes. Spectrochim Acta A 62:1165–1171

    Article  Google Scholar 

  20. Roy S, Banerjee R, Sarkar M (2006) Direct binding of Cu(II)-complexes of oxicam NSAIDs with DNA backbone. J Inorg Biochem 100:1320–1331

    Article  CAS  Google Scholar 

  21. Tamasi G, Serinelli F, Consumi M, Magnani A, Casolaro M, Cini R (2008) Release studies from smart hydrogels as carriers for piroxicam and copper(II)-oxicam complexes as anti-inflammatory and anti-cancer drugs. X-ray structures of new copper(II)-piroxicam and -isoxicam complex molecules. J Inorg Biochem 102:1862–1873

    Article  CAS  Google Scholar 

  22. Hadadzadeh H, Salimi M, Weil M, Jannesari Z, Darabi F, Abdi K, Khalaji AD, Sardari S, Ahangari R (2012) The piroxicam complex of copper(II), trans-[Cu(Pir)2(THF)2], and its interaction with DNA. J Mol Struct 1022:172–180

    Article  CAS  Google Scholar 

  23. Abu-Eittah RH, Zordok WA (2010) A molecular orbital treatment of piroxicam and its M2+-complexes: the change of the drug configuration in a time of bond formation. J Mol Struct Theochem 951:14–20

    Article  CAS  Google Scholar 

  24. Gaussian 09, Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian Inc., Wallingford CT

  25. GaussView, Version 5, Dennington R, Keith T, Millam J (2009) Semichem Inc., Shawnee Mission, KS

  26. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and non-covalent interactions. J Chem Phys 125:194101-1–194101-18

    Google Scholar 

  27. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, non-covalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functional and 12 other functionals. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  28. Perdew JP, Ruzsinszky A, Csonka GI, Constantin LA, Sun J (2009) Workhorse semilocal density functional for condensed matter physics and quantum chemistry. Phys Rev Lett 103:026403-1–026403-4

    Article  Google Scholar 

  29. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  30. Lee C, Yang W, Parr RG (1988) Development of the Colic–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  31. Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theor Chem Acc 97:119–124

    Article  CAS  Google Scholar 

  32. Gutten O, Besseová I, Rulísek L (2011) Interaction of metal ions with biomolecular ligands: how accurate are calculated free energies associated with metal ion complexation? J Phys Chem 115:11394–11402

    Article  CAS  Google Scholar 

  33. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  34. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comp Chem 24:669–681

    Article  CAS  Google Scholar 

  35. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  36. NIST Computational Chemistry Comparison and Benchmark Database (2016) NIST standard reference database number 101 release 16a, August 2013. In: Russell D Johnson III (ed) (http://cccbdb.nist.gov/). Accessed 28 Apr 2016

  37. Okuno Y (1997) Theoretical investigation of the mechanism of the Baeyer–Villiger reaction in nonpolar solvents. Chem Eur J 3:212

    Article  CAS  Google Scholar 

  38. Benson SW (1982) The foundations of chemical kinetics. Krieger, Florida

    Google Scholar 

  39. Ardura D, Lopez R, Sordo TL (2005) Relative Gibbs energies in solution through continuum models: effect of the loss of translational degrees of freedom in bimolecular reactions on Gibbs energy barriers. J Phys Chem B 109:23618–23623

    Article  CAS  Google Scholar 

  40. Alvarez-Idaboy JR, Reyes L, Cruz J (2006) A new specific mechanism for the acid catalysis of the addition step in the Baeyer–Villiger rearrangement. Org Lett 8:1763–1765

    Article  CAS  Google Scholar 

  41. Galano A (2007) Influence of silicon defects on the adsorption of thiophene-like compounds on polycyclic aromatic hydrocarbons: a theoretical study using thiophene + coronae as the simplest model. J Phys Chem A 111:1677–1682

    Article  CAS  Google Scholar 

  42. Matěj P, Jaroslav VB (2005) Theoretical description of copper Cu(I)/Cu(II) complexes in mixed ammine-aqua environment. DFT and ab initio quantum chemical study. Chem Phys 312:193–204

    Article  Google Scholar 

  43. Sotomayor RG, Holguín AR, Romdhani A, Martinez F, Jouyban A (2013) Solution thermodynamics of piroxicam in some ethanol + water mixtures and correlation with the Jouyban–Acree model. J Solut Chem 42:358–371

    Article  CAS  Google Scholar 

  44. Ivanova D, Deneva V, Nedeltcheva D, Kamounah FS, Gergov G, Hansen PE, Kawauchi S, Antonov L (2015) Tautomeric transformations of piroxicam in solution: a combined experimental and theoretical study. RSC Adv 5:31852–31860

    Article  CAS  Google Scholar 

  45. Ferreira de Souza K, Martins JA, Pessine FBT, Custodio R (2010) A theoretical and spectroscopic study of conformational structures of piroxicam. Spectrochim Acta Part A 75:901–907

    Article  Google Scholar 

  46. Allen LC (1975) A simple model of hydrogen bonding. J Am Chem Soc 97:6921–6940

    Article  CAS  Google Scholar 

  47. Tita B, Rusu G, Tita D (2013) Thermal behaviour of active substance versus pharmaceutical compounds for Ibuprofen. Rev Chim (Bucharest) 64:472–476

    CAS  Google Scholar 

  48. Cini R, Pogni R, Basosi R, Donati A, Rossi C, Sabadini L, Rollo L, Lorenzini S, Gelli R, Marcolongo R (1995) Oxigen radical scavenger activity, EPR, NMR, molecular mechanism and extended-Hückel molecular orbital investigation of the bis(piroxicam)Cu(II) complex. Met Based Drugs 2:43–56

    Article  CAS  Google Scholar 

  49. Méndez-Rojas MA, Cordova-Lozano F, Gojon-Zorrilla G, González-Vergara E, Quiroz MA (1999) Direct electrosynthesis of Cu, Cd, Zn complexes of piroxicam (4-hydroxy-2-methyl-N-(2-pyridyl) -2H-1,2-benzothiazine-3-carboxamide-1,1,-dioxide) and isoxicam (4-hydroxy-2-methyl-N-(5-methyl-3-isoxazolyl)-2H-1, 2-benzothiazine-3-carboxamide-1,1 dioxide) in non aqueous media by insitu generation of supporting electrolyte. Polyhedron 18:2651–2658

    Article  Google Scholar 

  50. Gehad GM, El-Gamel NEA (2004) Synthesis, investigation and spectroscopic characterization of piroxicam ternary complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with glycine and dl-phenylalanine. Spectrochim Acta Part A Mol Biomol Spect 60:3141–3154

    Article  Google Scholar 

  51. Pasquarello A, Petri I, Salmon PS, Parisel O, Car R, Tóth E, Powell DH, Fischer HE, Helm L, Merbach AE (2001) First solvation shell of the Cu(II) aqua ion: evidence for fivefold coordination. Science 291:856–859

    Article  CAS  Google Scholar 

  52. Bérces A, Nudaka T, Margl P, Ziegler T (1999) Solvation of Cu2+ in water and ammonia. Insight from static and dynamical density functional theory. J Phys Chem A 103:9693–9701

    Article  Google Scholar 

  53. Salmon PS, Howells WS, Mills R (1987) The dynamics of water molecules in ionic solution. II. Quasi-elastic neutron scattering and tracer diffusion studies of the proton and ion dynamics in concentrated Ni2+, Cu2+ and Nd3+ aqueous solutions. J Phys C Solid State Phys 20:5727

    Article  CAS  Google Scholar 

  54. El-Maali NA, Vire JC, Patriarche GJ, Ghandour MA (1989) Copper (II), lead (II) and cadmium (II) complexes with the antiinflammatory drugs piroxicam and tenoxicam. Anal Lett 22:3025–3039

    Article  Google Scholar 

Download references

Acknowledgments

L. G. L. -O acknowledges Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México, for the scholarship to pursue her major in Chemistry. This research was conducted under grants PAPIIT Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México IN222914 and PIAPI Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México C23. Authors acknowledge Red Mexicana de Fisicoquímica Teórica (CONACyT) under grants 253498 and 271361, for supporting this investigation. We gratefully acknowledge the generous computing time provided by Dirección General de Cómputo y de Tecnologías de Información y Comunicación, Universidad Nacional Autónoma de México through the grants SC16-1-IR-100 and SC16-1-IR-112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Agacino-Valdés.

Additional information

Published as part of the special collection of articles “Festschrift in honour of A. Vela.”

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Supplementary material 2 (RTF 88 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledesma-Olvera, L.G., Agacino-Valdés, E. & Gómez-Balderas, R. Stability constants of Cu(II)-piroxicam complexes in solution: a DFT study. Theor Chem Acc 135, 241 (2016). https://doi.org/10.1007/s00214-016-1996-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1996-4

Keywords

Navigation