Skip to main content
Log in

[Cu(H2O) n ]2+ (n = 1–6) complexes in solution phase: a DFT hierarchical study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

For the theoretical modeling of energy profiles of Cu2+ reactions with biological ligands, it is indispensable to know the structure of its solvation sphere. Not withstanding the experimental and theoretical studies on this topic, nature of Cu–water complexes is still subject of intense debate. In order to gain insight into the structural features and relative stabilities of the [Cu(H2O) n ]2+ (n = 1–6) species, several of their coordination modes considering water molecules in the first and second hydration shell of Cu2+, have been considered. Electronic structure calculations were performed with the G09 quantum chemistry suite of programs. Geometries are optimized by means of DFT functionals (allocate in different rungs of the Jacob’s ladder) and the ab initio MP2 perturbation theory applying the def-SVP valence split basis set; formation of complexes is studied in gas phase and solution by application of CPCM and SMD protocols. Stabilization energies for each stoichiometry are calculated at the MP2/aug-cc-pVTZ level of theory. [Cu(H2O)2]2+, [Cu(H2O)3]2+ and [Cu(H2O)4]2+ complexes show lineal, planar trigonal and square planar structures, respectively; gas phase and CPCM results indicate that [Cu(H2O)5]2+ is isoenergetic with [Cu(H2O)4]2+(H2O), but SMD solvent effects favor formation of intramolecular hydrogen bonds. For sixfold complexes, [Cu(H2O)4]2+(H2O)2 is consistently found to be the most stable compared with [Cu(H2O)6]2+ and [Cu(H2O)5]2+(H2O). For n = 5 and 6, hydrogen bond formation in the second hydration shell competes with coordination in axial positions; results indicate that this intramolecular hydrogen bond stabilizes the complex more than axial coordination of water. In gas phase as well as solution, BHLYP outcomes are always consistent with MP2 results, evidencing the importance of exact exchange in the functional. SMD solvent effects show that water ligands are more loosely bond to the central ion that might explain a variety of complexes coexisting in solution, contrasting with gas phase where releasing a water molecule entails a higher energetic cost. Results indicate a clear tendency to improve the geometry, the symmetry and the relative stabilization energy of the Cu–water complex, toward the MP2 value, when either advancing on the Jacob’s ladder or the percentage of exact exchange in the functional increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tapiero H, Townsed DM, Tew KD (2003) Trace elements in human physiology and pathology. Copp Biomed Pharmacother 57:386–398

    Article  CAS  Google Scholar 

  2. Barham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3:205–214

    Article  Google Scholar 

  3. Waggoner DJ, Bartnikas TB, Glitin JD (1999) The role of copper in neurodegenerative disease. Neurobiol Dis 6:221–230

    Article  CAS  Google Scholar 

  4. Stelmashook EV, Isaev NK, Genrikhs EE, Amelkina GA, Khaspekov LG, Skrebitsky VG, Illarioshkin SN (2014) Role of zinc and copper ions in the pathogenetic mechanisms of Alzheimer’s and Parkinson’s diseases. Biochemistry (Mosc) 79:391–396

    Article  CAS  Google Scholar 

  5. Weder JE, Dillon CT, Humbley TW, Kennedy BJ, Lay PA, Biffin JR, Regtop HL, Davies NM (2002) Copper complexes of non-esteroidal anti-inflammatory drugs: an opportunity yet to be realized. Coord Chem Rev 232:95–126

    Article  CAS  Google Scholar 

  6. Salmon PS, Neilson GW, Enderby JE (1988) The structure of Cu2+ aqueous solutions. J Phys C Solid State Phys 21:1335–1349

    Article  CAS  Google Scholar 

  7. Salmon PS, Neilso GW (1989) The coordination of Cu(II) in a concentrated copper nitrate solution. J Phys Condens Matter 1:5291–5295

    Article  CAS  Google Scholar 

  8. Okan SE, Salmon PS (1995) The Jahn–Teller effect in solutions of flexible molecules: a neutron diffraction study on the structure of a Cu2+ solution in ethylene glycol. Mol Phys 85:981–998

    Article  CAS  Google Scholar 

  9. de Almeida KJ, Rinkevicius Z, Hugosson HW, Ferreira AC, Aagren H (2007) Modeling of EPR parameters of copper(II) aqua complexes. Chem Phys 332:176–187

    Article  Google Scholar 

  10. Bryantsev VS, Diallo MS, Goddard WA III (2009) Computational study of copper(II) complexation and hydrolysis in aqueous solutions using mixed cluster/continuum models. J Phys Chem A 113:9559–9567

    Article  CAS  Google Scholar 

  11. Qiu SR, Wood BC, Ehrmann PR, Demos SG, Miller PE, Schaffers KI, Suratwala TI, Brow RK (2015) Origins of optical absorption characteristics of Cu2+ complexes in aqueous solutions. Phys Chem Chem Phys 17:18913–18923

    Article  CAS  Google Scholar 

  12. Moin ST, Hofer TS, Weiss AK, Rode BM (2013) Dynamics of ligand exchange mechanism at Cu(II) in water: an ab initio quantum mechanical charge field molecular dynamics study with extended quantum mechanical region. J Chem Phys 139:014503

    Article  Google Scholar 

  13. Sukrat K, Parasuk V (2007) Importance of hydrogen bonds to stabilities of copper–water complexes. Chem Phys Lett 447:58–64

    Article  CAS  Google Scholar 

  14. Ohtaki H, Radnai T (1987) Structural studies on solvation and complexation of metal ions in nonaqueous solutions. Pure Appl Chem 59:1143–1150

    Article  CAS  Google Scholar 

  15. Persson I, Persson P, Sandström M, Ullström AS (2002) Structure of Jahn–Teller distorted solvated copper (II) ions in solution, and in solids with apparently regular octahedral coordination geometry. J Chem Soc Dalton Trans 2002:1256–1265

  16. Chaboy J, Muñoz–Paez A, Merkling J, Marcos ES (2006) The hydration of Cu2+: can the Jahn–Teller effect be detected in liquid solution. J Chem Phys 124:064509

    Article  Google Scholar 

  17. Schwenk CF, Rode BM (2004) Influence of electron correlation effects on the solvation of Cu2+. J Am Chem Soc 126:12786–12787

    Article  CAS  Google Scholar 

  18. Salmon PS, Howells WS, Mills R (1987) The dynamics of water molecules in ionic solution. II. Quasi-elastic neutron scattering and tracer diffusion studies of the proton and ion dynamics in concentrated Ni2+, Cu2+ and Nd3+ aqueous solutions. J Phys C Solid State Phys 20:5727–5747

    Article  CAS  Google Scholar 

  19. Powell DH, Helm L, Merbach AE (1991) 17O nuclear magnetic resonance in aqueous solutions of Cu2+: the combined effect of Jahn–Teller inversion and solvent exchange on relaxation rates. J Chem Phys 95:9258–9265

    Article  CAS  Google Scholar 

  20. Ohtaki H (1993) Structure and dynamics of hydrated ions. Chem Rev 93:1157–1204

    Article  CAS  Google Scholar 

  21. Benfatto M, D´Angelo P, Longa SD, Pavel NV (2002) Evidence of distorted fivefold coordination of the Cu2+ aqua ion from an X-ray-absorption spectroscopy quantitative analysis. Phys Rev B 65:174205

    Article  Google Scholar 

  22. Frank P, Benfatto M, Szilgyi RK, D´Angelo P, Longa SD, Hodgson KO (2005) The solution structure of [Cu(aq)]2+ and its implications for rack-induced bonding in blue copper protein active sites. Inorg Chem 44:1922–1933

    Article  CAS  Google Scholar 

  23. Pasquarello A, Petri I, Salmon PS, Parisel O, Car R, Tóth E, Powell DH, Fischer HE, Helm L, Merbach AE (2001) First solvation shell of the Cu(II) aqua ion: evidence for five fold coordination. Science 291:856–859

    Article  CAS  Google Scholar 

  24. Bowron DT, Amboage M, Boada R, Freeman A, Hayamab S, Díaz–Moreno S (2013) The hydration structure of Cu2+: more tetrahedral than octahedral? RSC Adv 3:17803–17812

    Article  CAS  Google Scholar 

  25. Bryantsev VS, Diallo MS, van Duin ACT, Goddard WA III (2008) Hydration of copper(II): new insights from density functional theory and the COSMO solvation model. J Phys Chem A 112:9104–9112

    Article  CAS  Google Scholar 

  26. Bérces A, Nudaka T, Margl P, Ziegler T (1999) Solvation of Cu2+ in water and ammonia. Insight from static and dynamical density functional theory. J Phys Chem A 103:9693–9701

    Article  Google Scholar 

  27. O’Brien J, Williams R (2008) Hydration of gaseous copper dications probed by IR action spectroscopy. J Phys Chem A 112:5893–5901

    Article  Google Scholar 

  28. Rios–Font R, Sodupe M, Rodríguez–Santiago L, Taylor PR (2010) The role of exact exchange in the description of Cu2+–(H2O)n (n = 1–6) complexes by means of DFT methods. J Phys Chem A 114:10857–10863

    Article  Google Scholar 

  29. Palacios A, Corral I, Mó O, Martín F, Yáñez M (2005) On the existence and lifetimes of Cu2+ complexes with water, ammonia, and hydrogen cyanide. J Chem Phys 123:014315

    Article  Google Scholar 

  30. Poater J, Solà M, Rodríguez–Santiago L, Sodupe M (2004) Ground and low-lying states of Cu2+–H2O. a difficult case for density functional methods. J Chem Phys A 108:6072–6078

    Article  CAS  Google Scholar 

  31. Becke AD (1993) Density functional thermochemistry. III. the role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  32. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  33. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational circular dichroism spectra using density functionals force fields. J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  34. Zhang Y, Yang W (1998) A challenge for density functionals: self-interaction error increases for systems with a noninteger number of electrons. J Chem Phys 109:2604–2608

    Article  CAS  Google Scholar 

  35. Vydrov OA, Heyd J, Krukau AV, Scuseria GE (2006) Importance of short-range versus long-range Hartree–Fock exchange for the performance of hybrid density functionals. J Chem Phys 125:074106

    Article  Google Scholar 

  36. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 125:6158

    Article  Google Scholar 

  37. Perdew JP, Ruzsinszky A, Tao J, Staroverov VN, Scuseria GE, Csonka GI (2005) Prescription for the design and selection of density functional approximations: more constraint satisfaction with fewer fits. J Chem Phys 123:062201

    Article  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01. Gaussian Inc., Wallingford CT

  39. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  40. Perdew JP, Ruzsinszky A, Csonka GI, Constantin LA, Sun J (2009) Workhorse semilocal density functional for condensed matter physics and quantum chemistry. Phys Rev Lett 103:026403-1–026403-4

    Article  Google Scholar 

  41. Perdew JP, Ruzsinszky A, Csonka GI, Constantin LA, Sun J (2011) Erratum: ‘workhorse semilocal density functional for condensed matter physics and quantum chemistry’ [Phys Rev Lett 103: 026403 (2009)] Phys Rev Lett 106: 179902(E)

  42. Staroverova VN, Scuseria GE, Tao J, Perdew P (2003) Comparative assessment of a new nonempirical density functional: molecules and hydrogen-bonded complexes. J Chem Phys 119:12129–12137

    Article  Google Scholar 

  43. Lee C, Yang W, Parr RG (1988) Development of the Colle−Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  44. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  45. Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622

    Article  Google Scholar 

  46. Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97:2571–2577

    Article  Google Scholar 

  47. Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theor Chem Acc 97:119–124

    Article  CAS  Google Scholar 

  48. Gutten O, Beššeová R (2011) Interaction of metal with biomolecular ligands: how accurate are calculated free energies associated with metal ion complexation? J Phys Chem A 115:11394–11402

    Article  CAS  Google Scholar 

  49. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093

    Article  CAS  Google Scholar 

  50. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681

    Article  CAS  Google Scholar 

  51. Ho J, Klamt A, Coote ML (2010) Comment on the correct use of continuum solvent models. J Phys Chem A 114:13442–13444

    Article  CAS  Google Scholar 

  52. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  53. Ribeiro RF, Marenich AV, Cramer CJ, Truhlar DG (2011) Use of solution-phase vibrational frequencies in continuum models for the free energy of solvation. J Phys Chem B 115:14556–14562

    Article  CAS  Google Scholar 

  54. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  55. Dunning TH, Kendall RA (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6796–6806

    Article  Google Scholar 

Download references

Acknowledgements

E. A. G.-G. acknowledges Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México, for the scholarship to pursue his major in Chemistry. This research was conducted under grants PAPIIT Dirección General de Asuntos del Personal Académico–Universidad Nacional Autónoma de México IN222914 and PIAPI 1629 Facultad de Estudios Superiores Cuautitlán–Universidad Nacional Autónoma de México. We gratefully acknowledge the generous computing time provided by Dirección General de Cómputo y de Tecnologías de Información y Comunicación–Universidad Nacional Autónoma de México through the Grants SC16-1-IR-100 and SC16-1-IR-112. Authors acknowledge Red Mexicana de Fisicoquímica Teórica (CONACyT) under Grants 253498 and 271361, for supporting this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo Gómez-Balderas.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interests regarding the publication of this paper.

Additional information

Published as part of the special collection of articles “Festschrift in honour of A. Vela”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galván-García, E.A., Agacino-Valdés, E., Franco-Pérez, M. et al. [Cu(H2O) n ]2+ (n = 1–6) complexes in solution phase: a DFT hierarchical study. Theor Chem Acc 136, 29 (2017). https://doi.org/10.1007/s00214-017-2056-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2056-4

Keywords

Navigation