Skip to main content

Advertisement

Log in

Structural stability of binary \(\hbox {Pd}_{34-n}\hbox {M}_{n}\) (\(\hbox {M}=\hbox {Cu}\), Ag, Au) clusters

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We have investigated the structural properties, stability and magnetic properties of the \(\hbox {Pd}_{34-n}\hbox {M}_{n}\) (\(\hbox {M} = \hbox {Cu}\), Ag and Au) clusters series. The basin hopping Monte Carlo sampling method was employed to find low-energy candidates to the ground-state structures. Further density functional theory structural refinements were carried out in order to improve the physical property determinations. Stable compositions were identified, and structural and magnetic analyses were performed. Stability parameters, such as the excess energy, showed that binary particles are energetically favored over pure clusters for every composition. Structural descriptors showed that Pd–Ag and Pd–Au clusters exhibit core–shell-like arrangements, while Pd–Cu clusters present disordered mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wu L, Mendoza-García A, Li Q, Sun S (2016) Chem Rev 116(18):10473. https://doi.org/10.1021/acs.chemrev.5b00687

    Article  CAS  PubMed  Google Scholar 

  2. Rosi NL, Mirkin CA (2005) Chem. Rev. 105:1547. https://doi.org/10.1021/cr030067f

    Article  CAS  PubMed  Google Scholar 

  3. Ferrando R, Jellinek J, Johnston RL (2008) Chem. Rev. 108(3):845. https://doi.org/10.1021/cr040090g

    Article  CAS  PubMed  Google Scholar 

  4. Nonose S, Sone Y, Kaya K (1991) Zeitschrift für Physik D Atoms. Mol Clust 19(4):357

    Article  CAS  Google Scholar 

  5. Datta S, Raychaudhuri AK, Saha-dasgupta T, Datta S, Raychaudhuri AK, Saha-dasgupta T (2017) J Chem Phys 146(16):164301

    Article  CAS  PubMed  Google Scholar 

  6. Al-Odail F, Mazher J, Abuelela AM (2018) Comput Theor Chem 1125:103–111

    Article  CAS  Google Scholar 

  7. Wen JQ, Xia T, Zhou H, Wang JF (2014) J Phys Chem Solids 75(4):528

    Article  CAS  Google Scholar 

  8. Bouderbala W, Boudjahem AG, Soltani A (2014) Mol Phys 112(13):1789. https://doi.org/10.1080/00268976.2013.865089

    Article  CAS  Google Scholar 

  9. Pittaway F, Paz-Borbon LO, Johnston RL, Arslan H, Ferrando R, Mottet C, Barcaro G, Fortunelli A (2009) J Phys Chem C 113(21):9141. https://doi.org/10.1021/jp9006075

    Article  CAS  Google Scholar 

  10. Negreiros FR, Kuntová Z, Barcaro G, Rossi G, Ferrando R, Fortunelli A (2010) J Chem Phys 132(23):234703. https://doi.org/10.1063/1.3442911

    Article  CAS  PubMed  Google Scholar 

  11. Heshmatpour F, Abazari R, Balalaie S (2012) Tetrahedron 68(14):3001. https://doi.org/10.1016/j.tet.2012.02.028

    Article  CAS  Google Scholar 

  12. Xu C, Liu A, Qiu H, Liu Y (2011) Electrochem Commun 13(8):766. https://doi.org/10.1016/j.elecom.2011.04.007

    Article  CAS  Google Scholar 

  13. Yin Z, Zhou W, Gao Y, Ma D, Kiely CJ, Bao X (2012) Chem A Eur J 18(16):4887. https://doi.org/10.1002/chem.201103674

    Article  CAS  Google Scholar 

  14. Jo YG, Kim SM, Kim JW, Lee SY (2016) J Alloys Compd 688:447. https://doi.org/10.1016/j.jallcom.2016.07.227

    Article  CAS  Google Scholar 

  15. Mori K, Dojo M, Yamashita H (2013) ACS Catal 3(1):1114. https://doi.org/10.1021/cs400148n

    Article  CAS  Google Scholar 

  16. Science 311: 362 (2006). https://doi.org/10.1126/science.1120560

  17. Edwards JK, Solsona BE, Landon P, Carley AF, Herzing A, Kiely CJ, Hutchings GJ (2005) J Catal 236(1):69. https://doi.org/10.1016/j.jcat.2005.09.015

    Article  CAS  Google Scholar 

  18. Wong MS, Nutt MO, Kowalski KN, Hughes JB (2005) Environ Sci Technol 39(5):1346

    Article  CAS  Google Scholar 

  19. Fang W, Yang J, Gong J, Zheng N (2012) Adv Funct Mater 22(4):842. https://doi.org/10.1002/adfm.201101960

    Article  CAS  Google Scholar 

  20. Ge S, Liu F, Liu W, Yan M, Song X, Yu J (2014) Chem Commun 50(4):475. https://doi.org/10.1039/C3CC47622G. http://xlink.rsc.org/?DOI=C3CC47622G

  21. Chen J, Wiley B, McLellan J, Xiong Y, Li ZY, Xia Y (2005) Nano Lett 5(10):2058. https://doi.org/10.1021/nl051652u

    Article  CAS  PubMed  Google Scholar 

  22. Harris IA, Kidwell RS, Northby JA (1984) Phys Rev Lett 53(25):2390. https://doi.org/10.1103/PhysRevLett.53.2390

    Article  CAS  Google Scholar 

  23. Solov’yov IA, Solov’yov AV, Greiner W, Koshelev A, Shutovich A (2003) Phys Rev Lett 90(5):053401. https://doi.org/10.1103/PhysRevLett.90.053401

    Article  CAS  PubMed  Google Scholar 

  24. Doye JPK, Meyer L (2005) Phys Rev Lett 95(6):1. https://doi.org/10.1103/PhysRevLett.95.063401

    Article  CAS  Google Scholar 

  25. Molayem M, Grigoryan VG, Springborg M (2011) J Phys Chem C 115(15):7179. https://doi.org/10.1021/jp1094678

    Article  CAS  Google Scholar 

  26. Rossi G, Rapallo A, Mottet C, Fortunelli A, Baletto F, Ferrando R (2004) Phys Rev Lett 93(10):1. https://doi.org/10.1103/PhysRevLett.93.105503

    Article  CAS  Google Scholar 

  27. Rapallo A, Rossi G, Ferrando R, Fortunelli A, Curley BC, Lloyd LD, Tarbuck GM, Johnston RL (2005) J Chem Phys 122(19):194308. https://doi.org/10.1063/1.1898223

    Article  CAS  PubMed  Google Scholar 

  28. Li Z, Scheraga HA (1987) Chemistry 84:6611. https://doi.org/10.1073/pnas.84.19.6611

    Article  CAS  Google Scholar 

  29. Wales DJ, Doye JPK (1997) J Phys Chem A 101(28):5111. https://doi.org/10.1021/jp970984n

    Article  CAS  Google Scholar 

  30. Wales DJ, Scheraga HA (1999) Science 285(5432):1368. https://doi.org/10.1126/science.285.5432.1368

    Article  CAS  PubMed  Google Scholar 

  31. Wilson N, Johnston RL (2000) Eur Phys J D-Atom Mol Opt Plasma Phys 12(1):161

    CAS  Google Scholar 

  32. Deaven DM, Tit N, Morris JR, Ho KM (1996) Chem Phys Lett 256:195. https://doi.org/10.1016/0009-2614(96)00406-X

    Article  CAS  Google Scholar 

  33. Chen F, Johnston RL (2008) ACS Nano 2(1):165. https://doi.org/10.1021/nn700226y

    Article  CAS  PubMed  Google Scholar 

  34. Curley BC, Rossi G, Ferrando R, Johnston RL (2007) Eur Phys J D 43:53. https://doi.org/10.1140/epjd/e2007-00091-y

    Article  CAS  Google Scholar 

  35. Gupta R (1981) Phys Rev B 23(12):6265. https://doi.org/10.1103/PhysRevB.23.6265

    Article  CAS  Google Scholar 

  36. Cleri F, Rosato V (1993) Comput Simul Mater Sci 48(1):23

    Google Scholar 

  37. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) J Phys Condens Matter 21(39):395502. https://doi.org/10.1088/0953-8984/21/39/395502. http://www.ncbi.nlm.nih.gov/pubmed/21832390

  38. Csonka I, Vydrov OA, Scuseria GE, Constantin LA, Perdew JP, Ruzsinszky A, Zhou X, Burke K (2008) Phys Rev Lett 100(13):136406. https://doi.org/10.1103/PhysRevLett.100.136406

    Article  CAS  PubMed  Google Scholar 

  39. Corso AD (2014) Comput Mater Sci 95:337. https://doi.org/10.1016/j.commatsci.2014.07.043

    Article  CAS  Google Scholar 

  40. Marzari N, Vanderbilt D, De Vita A, Payne M (1999) Phys Rev Lett 82(16):3296. https://doi.org/10.1103/PhysRevLett.82.3296

    Article  CAS  Google Scholar 

  41. Kittel C (2005) Introduction to solid state physics. Wiley, Hoboken

    Google Scholar 

  42. Miedema A (1978) Zeitschrift fuer Met 69(5):287. https://inis.iaea.org/search/search.aspx?orig_q=RN:10420610

  43. Tyson WR, Miller WA, Tyson WR, Miller WA (1977) Surf Sci 62(1):267. https://doi.org/10.1016/0039-6028(77)90442-3. https://www.sciencedirect.com/science/article/pii/0039602877904423

  44. Itoh M, Kumar V, Adschiri T, Kawazoe Y (2009) J Chem Phys 131(17):174510

    Article  CAS  PubMed  Google Scholar 

  45. Kim DH, Kim HY, Ryu JH, Lee HM (2009) Phys Chem Chem Phys 11(25):5079. https://doi.org/10.1039/b821227a. http://xlink.rsc.org/?DOI=b821227a

  46. Okamoto H, Massalski T (1985) Bull Alloy Phase Diagr 6(3):229

    Article  CAS  Google Scholar 

  47. Teeriniemi J, Taskinen P, Laasonen K (2015) Intermetallics 57:41. https://doi.org/10.1016/j.intermet.2014.09.006

    Article  CAS  Google Scholar 

  48. Geng F, Boes JR, Kitchin JR (2017) Calphad Comput Coupling Phase Diagr Thermochem 56(December 2016):224. https://doi.org/10.1016/j.calphad.2017.01.009

    Article  CAS  Google Scholar 

  49. Massalski TB, Murray JL, Bennet LH, Baker H, Kacprazak L (eds) (1990) Binary Alloys Phase Diagrams, vol 1, 2nd edn, p 1115

Download references

Acknowledgements

We thank DGTIC–UNAM for providing computing facilities and to DGAPA–UNAM financial support under grant number IN113116.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Orgaz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4276 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fundora-Galano, G., Orgaz, E. Structural stability of binary \(\hbox {Pd}_{34-n}\hbox {M}_{n}\) (\(\hbox {M}=\hbox {Cu}\), Ag, Au) clusters. Theor Chem Acc 137, 87 (2018). https://doi.org/10.1007/s00214-018-2268-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2268-2

Keywords

Navigation