Skip to main content
Log in

Ab initio studies of the van der Waals complex CH4–O2. CH···O and CX···O interactions in halomethane X n CH4−n–O2 complexes (X = F, Cl; n = 1, 2, 3)

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Using the explicitly correlated CCSD(T)-F12b method with cc-pVXZ-F12 basis sets up to X = 4, geometries for various configurations of the triplet CH4–O2 van der Waals complex were optimized. Counterpoise-corrected geometries and energies were obtained, and extrapolations to the complete basis set (CBS) limit were performed. Accordingly, the most stable isomer of the complex has O2 T-shaped facing CH3 (De = 183 cm−1, CBS value), followed by O2 T-shaped in plane with CH2 (157 cm−1), being more stable than lying perpendicular to this plane (142 cm−1). The linear HCH3–OO structure is similarly stable (138 cm−1), whereas linear H2CH2–OO is less stable (115 cm−1). Structures with O2 facing CH have the lowest stability. Harmonic frequencies point to a stable HCH3–O2 complex, with CH4 and O2 frequencies slightly red shifted. Binding energies of the various structures can be related to the number of weak intermolecular C–H···O interactions. Comparisons with the literature results for CH4–N2, CH4–NO, and CH4–CO complexes are made. Complexes of fluoromethanes and chloromethanes with O2 in linear C···OO arrangements were studied at the cc-pVDZ-F12 level. Any substitution increases the stability of the complex over the methane values. Complexes of CHF3–OO and CHCl3–OO, with three halogens facing O2, are most stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kalugina YN, Lokshtanov SE, Cherepanov VN, Vigasin AA (2016) Ab initio 3D potential energy and dipole moment surfaces for the CH 4 –Ar complex: Collision-induced intensity and dimer content. J Chem Phys 144:54304. https://doi.org/10.1063/1.4940779

    Article  CAS  Google Scholar 

  2. Cappelletti D, Bartocci A, Frati F, Roncaratti LF, Belpassi L, Tarantelli F, Lakshmi PA, Arunan E, Pirani F (2015) H 2 O-CH 4 and H 2 S–CH 4 complexes: a direct comparison through molecular beam experiments and ab initio calculations. Phys Chem Chem Phys 17:30613–30623. https://doi.org/10.1039/C5CP03704B

    Article  CAS  PubMed  Google Scholar 

  3. Legon AC, Wallwork AL (1989) The pairwise interaction of methane with hydrogen cyanide: a surprising result from rotational spectroscopy. J Chem Soc, Chem Commun. https://doi.org/10.1039/c39890000588

    Article  Google Scholar 

  4. Legon AC, Wallwork AL (1992) Methane as a proton acceptor: rotational spectrum and internal dynamics of a weakly bound dimer of methane and hydrogen cyanide. J Chem Soc, Faraday Trans 88:1. https://doi.org/10.1039/ft9928800001

    Article  CAS  Google Scholar 

  5. Kalugina YN, Cherepanov VN, Buldakov MA et al (2009) Theoretical investigation of the potential energy surface of the van der Waals complex CH4–N2. J Chem Phys 131:134304. https://doi.org/10.1063/1.3242080

    Article  CAS  PubMed  Google Scholar 

  6. Daire SE, Lozeille J, Gamblin SD et al (2001) The Ã2Σ+←X̃ 2Π transition of the NO·CH4 and NO·CD4 complexes. Phys Chem Chem Phys 3:917–924. https://doi.org/10.1039/b010026i

    Article  CAS  Google Scholar 

  7. Wen B, Meyer H (2009) The near IR spectrum of the NO(XΠ2)–CH4 complex. J Chem Phys 131:34304. https://doi.org/10.1063/1.3175556

    Article  CAS  Google Scholar 

  8. Surin LA, Tarabukin IV, Panfilov VA et al (2015) Rotational study of the CH 4 –CO complex: Millimeter-wave measurements and ab initio calculations. J Chem Phys 143:154303. https://doi.org/10.1063/1.4933061

    Article  CAS  PubMed  Google Scholar 

  9. Liu Y, Jäger W (2004) Microwave investigation of the CO-CH4 van der Waals complex. J Chem Phys 121:6240–6248. https://doi.org/10.1063/1.1789872

    Article  CAS  PubMed  Google Scholar 

  10. Grein F (2017) High-level ab initio studies of the complex formed between CO and O2. Chem Phys 488–489:11–16. https://doi.org/10.1016/JCHEMPHYS.2017.03.007

    Article  Google Scholar 

  11. Grein F (2017) The CO2–O2 van der Waals complex. Comput Theor Chem 1114:101–105. https://doi.org/10.1016/J.COMPTC.2017.05.024

    Article  CAS  Google Scholar 

  12. Grein F (2018) High-level ab initio studies of NO(X2Π)-O2(X3Σg-) van der Waals complexes in quartet states. Mol Phys 116:1251–1257. https://doi.org/10.1080/00268976.2017.1420831

    Article  CAS  Google Scholar 

  13. Liuti G, Pirani F (1987) Molecular beam study of the interaction of atomic and molecular oxygen with methane. J Chem Phys 87:5266–5271. https://doi.org/10.1063/1.453669

    Article  CAS  Google Scholar 

  14. Werner H-J, Knowles PJ, Knizia G, Manby FR, Schütz M (2012) Molpro: a general-purpose quantum chemistry program package. Wiley Interdiscip Rev Comput Mol Sci 2:242–253. https://doi.org/10.1002/wcms.82

    Article  CAS  Google Scholar 

  15. Werner H-J, Knowles PJ, Knizia G, Manby FR, Schütz M, and others. MOLPRO, version 2012.1, a package of ab initio programs, see http://www.molpro.net

  16. Werner H-J, Manby FR (2006) Explicitly correlated second-order perturbation theory using density fitting and local approximations. J Chem Phys 124:54114. https://doi.org/10.1063/1.2150817

    Article  CAS  Google Scholar 

  17. Adler TB, Knizia G, Werner H-J (2007) A simple and efficient CCSD(T)-F12 approximation. J Chem Phys 127:221106. https://doi.org/10.1063/1.2817618

    Article  CAS  PubMed  Google Scholar 

  18. Knizia G, Werner H-J (2008) Explicitly correlated RMP2 for high-spin open-shell reference states. J Chem Phys 128:154103. https://doi.org/10.1063/1.2889388

    Article  CAS  PubMed  Google Scholar 

  19. Adler TB, Werner H-J (2009) Local explicitly correlated coupled-cluster methods: efficient removal of the basis set incompleteness and domain errors. J Chem Phys 130:241101. https://doi.org/10.1063/1.3160675

    Article  CAS  PubMed  Google Scholar 

  20. Adler TB, Werner H-J, Manby FR (2009) Local explicitly correlated second-order perturbation theory for the accurate treatment of large molecules. J Chem Phys 130:54106. https://doi.org/10.1063/1.3040174

    Article  CAS  Google Scholar 

  21. Knizia G, Adler TB, Werner H-J (2009) Simplified CCSD(T)-F12 methods: theory and benchmarks. J Chem Phys 130:54104. https://doi.org/10.1063/1.3054300

    Article  CAS  Google Scholar 

  22. Hill JG, Peterson KA, Knizia G, Werner H-J (2009) Extrapolating MP2 and CCSD explicitly correlated correlation energies to the complete basis set limit with first and second row correlation consistent basis sets. J Chem Phys 131:194105. https://doi.org/10.1063/1.3265857

    Article  CAS  PubMed  Google Scholar 

  23. Peterson KA, Adler TB, Werner H-J (2008) Systematically convergent basis sets for explicitly correlated wavefunctions: The atoms H, He, B-Ne, and Al–Ar. J Chem Phys 128:84102. https://doi.org/10.1063/1.2831537

    Article  CAS  Google Scholar 

  24. Marchetti O, Werner H-J (2009) Accurate calculations of intermolecular interaction energies using explicitly correlated coupled cluster wave functions and a dispersion-weighted MP2 method . J Phys Chem A 113:11580–11585. https://doi.org/10.1021/jp9059467

    Article  CAS  PubMed  Google Scholar 

  25. De Lange KM, Lane JR (2011) Explicit correlation and intermolecular interactions: Investigating carbon dioxide complexes with the CCSD(T)-F12 method. J Chem Phys 134:34301. https://doi.org/10.1063/1.3526956

    Article  CAS  Google Scholar 

  26. Nasri S, Ajili Y, Jaidane N-E et al (2015) Potential energy surface of the CO2–N2 van der Waals complex. J Chem Phys 142:174301. https://doi.org/10.1063/1.4919396

    Article  CAS  PubMed  Google Scholar 

  27. Schwenke DW (2005) The extrapolation of one-electron basis sets in electronic structure calculations: how it should work and how it can be made to work. J Chem Phys 122:14107. https://doi.org/10.1063/1.1824880

    Article  CAS  PubMed  Google Scholar 

  28. Helgaker T, Klopper W, Koch H, Noga J (1997) Basis-set convergence of correlated calculations on water. J Chem Phys 106:9639–9646. https://doi.org/10.1063/1.473863

    Article  CAS  Google Scholar 

  29. Halkier A, Helgaker T, Jørgensen P et al (1998) Basis-set convergence in correlated calculations on Ne, N2, and H2O. Chem Phys Lett 286:243–252. https://doi.org/10.1016/S0009-2614(98)00111-0

    Article  CAS  Google Scholar 

  30. van Duijnen PT, Swart M (1998) Molecular and atomic polarizabilities: Thole’s model revisited. J Phys Chem A 102:2399. https://doi.org/10.1021/JP980221F

    Article  CAS  Google Scholar 

  31. Bruna PJ, Grein F (2009) Axial asymmetry of the charge- and spin-density distributions in Π states. Molecular quadrupole moments and hyperfine coupling constants of CH, NH, OH, CF, LiO, NO, and FO. J Phys Chem A 113:2615–2622. https://doi.org/10.1021/jp807885c

    Article  CAS  PubMed  Google Scholar 

  32. NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. P.J. Linstrom and W.G. Mallard

Download references

Acknowledgements

Thanks to Dr. Pablo J. Bruna for reading the manuscript and for useful suggestions. Long-standing support by the Natural Sciences and Engineering Research Council of Canada, and provision of computer time by Compute Canada and ACEnet Canada is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Grein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grein, F. Ab initio studies of the van der Waals complex CH4–O2. CH···O and CX···O interactions in halomethane X n CH4−n–O2 complexes (X = F, Cl; n = 1, 2, 3). Theor Chem Acc 137, 70 (2018). https://doi.org/10.1007/s00214-018-2250-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2250-z

Keywords

Navigation