Skip to main content
Log in

Accurate calculation of the ionization energies of the chlorine lone pairs in 1,1,1-trifluoro-2-chloroethane (HCFC-133a)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The vertical ionization energies of the chlorine lone pairs in HCFC-133a have been calculated at the SCF (via Koopmans’ theorem and including orbital relaxation) and correlated (ROMP2, OVGF, and ROCCSD(T)) levels. Dunning aug-cc-pVXZ (X = D, T, and Q) basis sets were employed, and the ROMP2 and ROCCSD(T) results were extrapolated to the complete basis set (CBS) limit. Our highest-level results (obtained at the ROCCSD(T)/CBS level) were 11.99 and 12.08 eV for the Cl lone pairs of A″ and A′ symmetry, respectively. The values obtained at the computationally much less demanding ROMP2/CBS level were just 0.10 and 0.13 eV higher than the highest-level ones. Using the Cl lone-pair band of the photoelectron spectrum of the HCF2Cl and CF3Cl molecules as a guide, it is considered very unlikely that these two lone pairs can be discriminated in the photoelectron spectrum of the title molecule. The use of the calculated IPs to estimate the energies of the Rydberg states of HCFC-133a is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hayman GD, Derwent RG (1997) Environ Sci Technol 31:327

    Article  CAS  Google Scholar 

  2. Berends AG, de Rooij CG, Shin-ya S, Thompson RS (1999) Arch Environ Contam Toxicol 36:146

    Article  CAS  Google Scholar 

  3. Hasson AS, Moore CM, Smith IWM (1998) In J Chem Kinet 30:541

    Article  CAS  Google Scholar 

  4. Saar BG, Steeves AH, Thoman JW Jr, Howard DL, Schofield DP, Kjaergaard HG (2005) J Phys Chem A 109:5323

    Article  CAS  Google Scholar 

  5. Newnham D, Ballard J (1995) J Quant Spectrosc Radiat Transf 53:471

    Article  CAS  Google Scholar 

  6. Di Lonardo G, Masciarelli G (2000) J Quant Spectrosc Radiat Transf 66:129

    Article  CAS  Google Scholar 

  7. UNEP (1993) 1983 Report of the Technology and Economic Assessment Panel. United Nations Environment Programme, New York

  8. UNEP (1992) Report of the Fourth Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer. United Nations Environment Programme, New York

  9. Mogelberg TE, Nielsen OJ, Sehested J, Wallington TJ (1995) J Phys Chem 99:13437

    Article  Google Scholar 

  10. Sehested J, Nielsen OJ, Wallington TJ (1993) Chem Phys Lett 213:457

    Article  CAS  Google Scholar 

  11. Cho DH, Kim YG, Chung MJ, Chung JS (1997) Korean J Chem Eng 14:502

    Article  CAS  Google Scholar 

  12. Setser DW, Lee T-S, Danen WC (1985) J Phys Chem 89:5799

    Article  CAS  Google Scholar 

  13. Rakestraw DJ, Holmes BE (1991) J Phys Chem 95:3968

    Article  CAS  Google Scholar 

  14. Enstice EC, Duncan JR, Setser DW, Holmes BE (2011) J Phys Chem A 115:1054

    Article  CAS  Google Scholar 

  15. Wang L, Zhao Y, Zhang J, Dai Y, Zhang J (2011) Theor Chem Accounts 128:183

    Article  Google Scholar 

  16. Zhao Y, He H, Zhang J, Wang L (2012) In J Chem Kinet 44:661

    Article  CAS  Google Scholar 

  17. Rodrigues GP, Lucena JR Jr, Ventura E, Monte SA d, Reva I, Fausto R (2013) J Chem Phys 139:204302

    Article  Google Scholar 

  18. Ichimura T, Kirk AW, Tschuikow-Roux E (1977) J Phys Chem 81:1153

    Article  CAS  Google Scholar 

  19. De Souza MA, Ventura E, Araújo RCMU, Ramos MN, Monte SA (2009) J Comput Chem 30:1075

  20. De Medeiros VC, Ventura E, do Monte SA (2012) Chem Phys Lett 546:30

    Article  Google Scholar 

  21. Sándorfy C (ed) (2002) Chapter 1. In: The role of Rydberg states in spectroscopy and photochemistry. Kluwer, New York

  22. Rogers NJ, Simpson MJ, Tuckett RP, Dunnb KF, Latimer CJ (2010) Phys Chem Chem Phys 12:10971

    Article  CAS  Google Scholar 

  23. Suzuki S, Mitsuke K, Imamura T, Koyano I (1992) J Chem Phys 96:7500

    Article  CAS  Google Scholar 

  24. Martín I, Mayor E, Velasco AM (2006) Theor Chem Accounts 116:614

    Article  Google Scholar 

  25. Pitarch-Ruiz J, de Meras SA, Sanchez-Marin J, Mayor E, Velasco AM, Martín I (2007) J Phys Chem A 111:3321

    Article  CAS  Google Scholar 

  26. Bashkin S, Stoner JO Jr (1978) Atomic energy levels and Gotrian diagrams, vol 1, 2nd edn. North Holland/American Elsevier, New York

  27. Lauderdale WJ, Stanton JF, Gauss J, Watts JD, Bartlett RJ (1991) Chem Phys Lett 187:21

    Article  CAS  Google Scholar 

  28. Bartlett RJ (1995) In: Yarkony DR (ed) Modern electronic structure theory. World Scientific, Singapore, pp 1047–1131

    Chapter  Google Scholar 

  29. Kiohara VO, Carvalho EFV, Paschoal CWA, Machado FBC, Orlando Roberto-Neto O (2013) Chem Phys Lett 42:568–569

    Google Scholar 

  30. Paukstis SJ, Gole JL, Dixon DA, Peterson KA (2002) J Phys Chem A 106:8435

    Article  CAS  Google Scholar 

  31. Bendikov M, Solouki B, Auner N, Apeloig Y (2002) Organometallics 21:1349

    Article  CAS  Google Scholar 

  32. Cederbaum LS (1975) J Phys B 8:290

    Article  CAS  Google Scholar 

  33. von Niessen W, Shirmer J, Cederbaum LS (1984) Comput Phys Rep 1:57

    Article  Google Scholar 

  34. Zakrzewski VG, von Niessen W (1993) J Comput Chem 14:13

    Article  CAS  Google Scholar 

  35. Ortiz JV (1989) Int J Quantum Chem Quant Chem Symp 23:321

    CAS  Google Scholar 

  36. Lin JS, Ortiz JV (1990) Chem Phys Lett 171:197

    Article  CAS  Google Scholar 

  37. Zakrzewski VG, Ortiz JV, Nichols JA, Heryadi D, Yeager DL, Golab JT (1996) Int J Quantum Chem 60:29

    Article  Google Scholar 

  38. Knowles PJ, Andrews JS, Amos RD, Handy NC, Pople JA (1991) Chem Phys Lett 186:130

    Article  CAS  Google Scholar 

  39. Koopmans T (1933) Physica 1:104

    Article  CAS  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, revision C.01. Gaussian, Inc., Wallingford

  41. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  42. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796

    Article  CAS  Google Scholar 

  43. Won DE, Dunning TH Jr (1993) J Chem Phys 98:1358

    Article  Google Scholar 

  44. Feller KA, Peterson KA (1998) J Chem Phys 108:154

    Article  CAS  Google Scholar 

  45. Radziemski LJ Jr, Kaufman V (1969) J Opt Soc Am 59:424

    Article  CAS  Google Scholar 

  46. Novak I, Cvitaš T, Klasinc L, Güsten H (1981) J Chem Soc Faraday Trans 2(77):2049

    Article  Google Scholar 

  47. Dunning TH Jr, Peterson KA, Wilson AK (2001) J Chem Phys 114:9244

    Article  CAS  Google Scholar 

  48. Møller C, Plesset MS (1934) Phys Rev 46:618

    Article  Google Scholar 

  49. Ogata T, Koike K, Suzuki H (1986) J Mol Struct 144:1

    Article  CAS  Google Scholar 

  50. Lucena JR Jr, Ventura E, do Monte SA, Araújo RCMU, Ramos MN, Fausto R (2007) J Chem Phys 127:164320

    Article  Google Scholar 

  51. Holland DMP, Potts AW, Karlsson L, Novak I, Zaytseva IL, Trofimov AB, Gromov EV, Schirmer JS (2010) J Phys B 43:135101

  52. Sikorska C, Ignatowska D, Freza S, Skurski P (2011) J Theor Comput Chem 10:93

    Article  CAS  Google Scholar 

  53. Zakrzewski VG, Dolgounitcheva O, Ortiz JV (1996) J Chem Phys 105:8748

    Article  CAS  Google Scholar 

  54. Cvitaš T, Güsten H, Klasinc L (1977) J Chem Phys 67:2687

    Article  Google Scholar 

  55. Lowe JP, Peterson KA (2006) Sect. 11-11. In: Quantum chemistry, 3rd edn. Elsevier, Amsterdam

  56. Harshbarger WR, Kuebler NA, Robin MB (1974) J Chem Phys 60:345

  57. Lappert MF, Pedley JB, Sharp GJ, Guest MF (1976) J Chem Soc Faraday Trans 2(72):539

    Article  Google Scholar 

  58. Dobson B, Hillier IH, Connor JA, Moncrieff D, Scanlan M, Garner CD (1983) J Chem Soc Faraday Trans 2(79):295

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Centro Nacional de Processamento de Alto Desempenho-São Paulo (CENAPAD-SP) for providing access to the computational facilities, and to the Brazilian Agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for providing financial support. They also thank the reviewers for their very valuable comments and suggestions. GPR thanks CNPq and CAPES for the scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silmar Andrade do Monte.

Additional information

This paper belongs to Topical Collection Brazilian Symposium of Theoretical Chemistry (SBQT2013)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, G.P., Lucena, J.R., Ventura, E. et al. Accurate calculation of the ionization energies of the chlorine lone pairs in 1,1,1-trifluoro-2-chloroethane (HCFC-133a). J Mol Model 20, 2393 (2014). https://doi.org/10.1007/s00894-014-2393-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2393-3

Keyword

Navigation