Skip to main content
Log in

CHF3…H2O complex revisited: a matrix isolation and ab initio study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The structural and spectroscopic features of the CHF3…H2O complex have been investigated using high-level ab initio calculations and IR matrix isolation spectroscopy. In contrast to previous findings, the computations at the CCSD(T)/L3a_3 and MP2/L3a_3 levels of theory revealed only one structure of the complex stabilized by two C-H…O and O-H…F hydrogen bonds. The interaction energy extrapolated to a complete basis set with ZPVE and BSSE corrections is 2.73 kcal/mol at the CCSD(T) level, taking into account the zero-point vibrational energy (ZPVE) and basis set superposition error (BSSE) corrections. According to Bader’s analysis, complex exhibits a cyclic structure, which confirms the existence of ring critical point as well as bond critical points in the system. The calculated complexation-induced shifts of the fluoroform fundamentals are in good agreement with the matrix isolation results. In addition to previously reported IR absorptions of the complex, the feature corresponding to the C-F bending mode of CHF3…H2O was first observed, in good correlation with the computational predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hobza P, Zahradník R, Müller-Dethlefs K (2006) The world of non-covalent interactions: 2006. Collect Czechoslov Chem Commun 71:443–531. https://doi.org/10.1135/cccc20060443

    Article  CAS  Google Scholar 

  2. Gilli G, Gilli P (2000) Towards an unified hydrogen-bond theory. J Mol Struct 552:1–15. https://doi.org/10.1016/S0022-2860(00)00454-3

    Article  CAS  Google Scholar 

  3. Gu Y, Kar T, Scheiner S (1999) Fundamental properties of the CH ··· O interaction: is it a true hydrogen bond? J Am Chem Soc 121:9411–9422. https://doi.org/10.1021/ja991795g

    Article  CAS  Google Scholar 

  4. Scheiner S, Kar T (2008) Spectroscopic and structural signature of the CH-O hydrogen bond. J Phys Chem A 112:11854–11860. https://doi.org/10.1021/jp806984g

    Article  CAS  PubMed  Google Scholar 

  5. Scheiner S, Grabowski SJ, Kar T (2001) Influence of hybridization and substitution on the properties of the CH⋯O hydrogen bond. J Phys Chem A 105:10607–10612. https://doi.org/10.1021/jp0131267

    Article  CAS  Google Scholar 

  6. Scheiner S, Kar T (2002) Red- versus blue-shifting hydrogen bonds: are there fundamental distinctions? J Phys Chem A 106:1784–1789. https://doi.org/10.1021/jp013702z

    Article  CAS  Google Scholar 

  7. Martins JBL, Politi JRS, Garcia E, Vilela AFA, Gargano R (2009) Theoretical study of CH4 −CH4, CHF3−CH4, CH4 −H2O, and CHF3 −H2O dimers. J Phys Chem A 113:14818–14823. https://doi.org/10.1021/jp904962b

    Article  CAS  PubMed  Google Scholar 

  8. Paulson SL, Barnes AJ (1982) Trihalogenomethane - base complexes studied by vibrational spectroscopy in low-temperature matrices. J Mol Struct 80:151–158. https://doi.org/10.1016/0022-2860(82)87223-2

    Article  CAS  Google Scholar 

  9. Mo Y, Wang C, Guan L, Braïda B, Hiberty PC, Wu W (2014) On the nature of blueshifting hydrogen bonds. Chem - A Eur J 20:8444–8452. https://doi.org/10.1002/chem.201402189

    Article  CAS  Google Scholar 

  10. Sosulin IS, Shiryaeva ES, Tyurin DA, Feldman VI (2018) Matrix isolation and ab initio study on the CHF3···CO complex. J Phys Chem A 122:4042–4047. https://doi.org/10.1021/acs.jpca.8b01485

  11. Rodziewicz P, Rutkowski KS, Melikova SM (2009) The cooperativity of C-H center dot center dot center dot F blue-shifting hydrogen bonds. Static and dynamic calculations on CF3H dimer, trimer and tetramer. Pol J Chem 83:1075–1084

    CAS  Google Scholar 

  12. Asfin RE, Melikova SM, Rutkowski KS (2018) The infrared study of fluoroform + methyl fluoride mixtures in argon and nitrogen matrices. Evidence of nonlinear blue-shifting complex formation. Spectrochim Acta Part A Mol Biomol Spectrosc 203:185–194. https://doi.org/10.1016/J.SAA.2018.05.105

    Article  CAS  Google Scholar 

  13. Willis JK, Stammer D, Spielhagen RF, Werner K, Sørensen SA, Zamelczyk K, Kandiano E, Budeus G, Husum K, Marchitto TM, Hald M, Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, Rayner D, Hirschi JJJ-M, Kanzow T, Johns WE, Wright PG, Frajka-Williams E, Bryden HL, Meinen CS, Baringer MO, Marotzke J, Beal LM, Cunningham SASS A, Levermann A, Bamber JL, Drijfhout S, Ganopolski A, Haeberli W, NRP H, Huss M, Krüger K, Lenton TM, Lindsay RW, Notz D, Wadhams P, Weber S, Gregory JM, Curry R, Mauritzen C, Church JA, Longworth HR (2007) Intergovernmental panel on climate change, climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Science 317:1–5. https://doi.org/10.1029/2005GL023209

    Article  CAS  Google Scholar 

  14. Pejov L, Hermansson K (2003) On the nature of blueshifting hydrogen bonds: ab initio and density functional studies of several fluoroform complexes. J Chem Phys 119:313–324. https://doi.org/10.1063/1.1571517

    Article  CAS  Google Scholar 

  15. Joseph J, Jemmis ED (2007) Red-, blue-, or no-shift in hydrogen bonds: a unified explanation. J Am Chem Soc 129:4620–4632. https://doi.org/10.1021/ja067545z

    Article  CAS  PubMed  Google Scholar 

  16. Hermansson K (2002) Blue-shifting hydrogen bonds. J Phys Chem A 106:4695–4702. https://doi.org/10.1021/jp0143948

    Article  CAS  Google Scholar 

  17. Trung NT, Hung NP, Hue TT, Nguyen MT (2011) Existence of both blue-shifting hydrogen bond and Lewis acid–base interaction in the complexes of carbonyls and thiocarbonyls with carbon dioxide. Phys Chem Chem Phys 13:14033 . doi: https://doi.org/10.1039/c1cp20533a

  18. Mukhopadhyay A (2016) Interplay between C-H⋯O, O-H⋯X (X = C, F, Cl) and H-O⋯Y (C, Cl, F) interactions in methane-water and halogen substituted methane-water complexes: theoretical investigations of structure and energy. Comput Theor Chem 1083:19–30. https://doi.org/10.1016/j.comptc.2016.03.004

    Article  CAS  Google Scholar 

  19. Ramasami P, Ford TA (2012) Ab initio studies of some hydrogen-bonded complexes of fluoroform – evidence for blue-shifted behaviour. J Mol Struct 1023:163–169. https://doi.org/10.1016/J.MOLSTRUC.2012.04.001

    Article  CAS  Google Scholar 

  20. Gopi R, Ramanathan N, Sundararajan K (2016) Blue-shift of the C-H stretching vibration in CHF3-H2O complex: matrix isolation infrared spectroscopy and ab initio computations. Chem Phys 476:36–45. https://doi.org/10.1016/j.chemphys.2016.07.016

    Article  CAS  Google Scholar 

  21. Kohls E, Mishev A, Pejov L (2013) Solvation of fluoroform and fluoroform-dimethylether dimer in liquid krypton: a theoretical cryospectroscopic study. J Chem Phys 139:054504 . doi: https://doi.org/10.1063/1.4816282

  22. Feldman VI (2014) EPR and IR spectroscopy of free radicals and radical ions produced by radiation in solid systems. In: Applications of EPR in radiation research. Springer International Publishing, Cham, pp 151–187

  23. Laikov DN (2005) A new class of atomic basis functions for accurate electronic structure calculations of molecules. Chem Phys Lett 416:116–120. https://doi.org/10.1016/j.cplett.2005.09.046

    Article  CAS  Google Scholar 

  24. Kendall RA, Dunning TH, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6796–6806. https://doi.org/10.1063/1.462569

    Article  CAS  Google Scholar 

  25. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023. https://doi.org/10.1063/1.456153

    Article  CAS  Google Scholar 

  26. Sosulin IS, Shiryaeva ES, Tyurin DA, Feldman VI (2017) Communication: a hydrogen-bonded difluorocarbene complex: ab initio and matrix isolation study. J Chem Phys 147:131102. https://doi.org/10.1063/1.4999772

    Article  CAS  PubMed  Google Scholar 

  27. Ryazantsev SV, Tyurin DA, Feldman VI, Khriachtchev L (2017) Spectroscopic characterization of the complex of vinyl radical and carbon dioxide: matrix isolation and ab initio study. J Chem Phys 147:184301. https://doi.org/10.1063/1.5000578

    Article  CAS  PubMed  Google Scholar 

  28. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566. https://doi.org/10.1080/00268977000101561

    Article  CAS  Google Scholar 

  29. Laikov DN, Ustynyuk YA (2005) PRIRODA-04: a quantum-chemical program suite. New possibilities in the study of molecular systems with the application of parallel computing. Russ Chem Bull 54:820–826. https://doi.org/10.1007/s11172-005-0329-x

    Article  CAS  Google Scholar 

  30. Gopi R, Ramanathan N, Sundararajan K (2014) Experimental evidence for blue-shifted hydrogen bonding in the fluoroform–hydrogen chloride complex: a matrix-isolation infrared and ab Initio study. J Phys Chem A 118:5529–5539. https://doi.org/10.1021/jp503718v

    Article  CAS  PubMed  Google Scholar 

  31. Sundararajan K, Ramanathan N, Viswanathan KS, Vidya K, Jemmis ED (2013) Complexes of acetylene–fluoroform: a matrix isolation and computational study. J Mol Struct 1049:69–77. https://doi.org/10.1016/J.MOLSTRUC.2013.05.069

    Article  CAS  Google Scholar 

  32. Bader RFW (2002) Atoms in molecules. In: Encyclopedia of Computational Chemistry. John Wiley & Sons, Ltd, Chichester, UK

  33. Ryazantsev SV, Tyurin DA, Feldman VI (2017) Experimental determination of the absolute infrared absorption intensities of formyl radical HCO. Spectrochim Acta Part A Mol Biomol Spectrosc 187:39–42. https://doi.org/10.1016/J.SAA.2017.06.018

    Article  CAS  Google Scholar 

  34. Ryazantsev SV, Feldman VI (2015) Matrix-isolation studies on the radiation-induced chemistry in H2O/CO2 systems: reactions of oxygen atoms and formation of HOCO radical. J Phys Chem A 119:2578–2586. https://doi.org/10.1021/jp509313n

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Joint Supercomputer Center of the Russian Academy of Sciences (JSCC RAS) is acknowledged for granting computation resources. The authors are indebted to I.V. Tyulpina and E. S. Shiryaeva for experimental assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir I. Feldman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sosulin, I.S., Tyurin, D.A. & Feldman, V.I. CHF3…H2O complex revisited: a matrix isolation and ab initio study. Struct Chem 30, 559–566 (2019). https://doi.org/10.1007/s11224-018-1232-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1232-z

Keywords

Navigation