Skip to main content
Log in

Structural and optical properties of Ni atoms and \(\hbox {Ni}_{55}\) cluster adsorbed on a rutile \(\hbox {TiO}_{2}\) (110) surface

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Adsorbed Ni in a clean rutile \(\hbox {TiO}_{2}\) (110) surface has been investigated by computing the electronic band structure and the optical linear response properties within the density functional theory. We have determined the nucleation preferred sites by investigating the equilibrium geometries and their corresponding binding energies. The electronic properties of a closed-shell Mackay icosahedral \(\hbox {Ni}_{55}\) cluster on \(\hbox {TiO}_2\) show a strong trend to keep the free cluster shape with a small but significant charge transfer to the \(\hbox {TiO}_2\) surface. The optical properties investigation of the \(\hbox {Ni}_{55}\) cluster on rutile (110) indicates the development of an absorption band in the visible region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nakata K, Fujishima A (2012) J Photochem Photobiol C Photochem Rev 13(3):169. https://doi.org/10.1016/j.jphotochemrev.2012.06.001. http://www.sciencedirect.com/science/article/pii/S1389556712000421

  2. Wang F, Zhang S, Li C, Liu J, He S, Zhao Y, Yan H, Wei M, Evans DG, Duan X (2014) RSC Adv 4(21):10834. https://doi.org/10.1039/C3RA47076H

    Article  CAS  Google Scholar 

  3. Torres C, Campos C, Fierro JLG, Oportus M, Reyes P (2013) Catal Lett 143(8):763. https://doi.org/10.1007/s10562-013-1034-2

    Article  CAS  Google Scholar 

  4. Sun K, Kohyama M, Tanaka S, Takeda S (2014) J Phys Chem C 118(3):1611. https://doi.org/10.1021/jp4099254

    Article  CAS  Google Scholar 

  5. Wang YG, Yoon Y, Glezakou VA, Li J, Rousseau R (2013) J Am Chem Soc 135(29):10673. https://doi.org/10.1021/ja402063v

    Article  CAS  Google Scholar 

  6. Green IX, Tang W, Neurock M, Yates JT (2014) Acc Chem Res 47(3):805. https://doi.org/10.1021/ar400196f

    Article  CAS  Google Scholar 

  7. Einaga H, Urahama N, Tou A, Teraoka Y (2014) Catal Lett 144(10):1653. https://doi.org/10.1007/s10562-014-1316-3

    Article  CAS  Google Scholar 

  8. Yu J, Qi L, Jaroniec M (2010) J Phys Chem C 114(30):13118. https://doi.org/10.1021/jp104488b

    Article  CAS  Google Scholar 

  9. DeSario PA, Pietron JJ, DeVantier DE, Brintlinger TH, Stroud RM, Rolison DR (2013) Nanoscale 5(17):8073. https://doi.org/10.1039/C3NR01429K

    Article  CAS  Google Scholar 

  10. Wu F, Hu X, Fan J, Liu E, Sun T, Kang L, Hou W, Zhu C, Liu H (2013) Plasmonics 8(2):501. https://doi.org/10.1007/s11468-012-9418-5

    Article  CAS  Google Scholar 

  11. Kuo WS (2002) J Environ Sci Health Part B 37(1):65. https://doi.org/10.1081/PFC-120002898

    Article  Google Scholar 

  12. Labat F, Baranek P, Adamo C (2008) J Chem Theory Comput 4(2):341. https://doi.org/10.1021/ct700221w

    Article  CAS  Google Scholar 

  13. Diebold U (2003) Surf Sci Rep 48(5):53. https://doi.org/10.1016/S0167-5729(02)00100-0. http://www.sciencedirect.com/science/article/pii/S0167572902001000

  14. Wang Y, Su Y, Zhu M, Kang L (2015) RSC Adv 5(21):16582. https://doi.org/10.1039/C4RA13975E. http://xlink.rsc.org/?DOI=C4RA13975E

  15. Galhenage RP, Yan H, Tenney SA, Park N, Henkelman G, Albrecht P, Mullins DR, Chen DA (2013) J Phys Chem C 117(14):7191. https://doi.org/10.1021/jp401283k

    Article  CAS  Google Scholar 

  16. Cao PL, Ellis DE, Dravid VP (1999) J Mater Res 14(9):3684

    Article  CAS  Google Scholar 

  17. Kapilashrami M, Zhang Y, Liu YS, Hagfeldt A, Guo J (2014) Chem Rev 114(19):9662. https://doi.org/10.1021/cr5000893

    Article  CAS  Google Scholar 

  18. Sánchez Godoy HE, Rodríguez-Rojas RA, Castañeda-Contreras J, Marañón-Ruiz VF, Pérez-Ladrón de Guevara H, López-Luke T, De la Rosa-Cruz E (2015) Proc SPIE 9545:9545. https://doi.org/10.1117/12.2188677

    Google Scholar 

  19. Zhu S, Wang LM, Zu XT, Xiang X (2006) Appl Phys Lett 88(4):043107. https://doi.org/10.1063/1.2168037

    Article  Google Scholar 

  20. Tsuji H, Sagimori T, Kurita K, Gotoh Y, Ishikawa J (2002) Surf Coat Technol 158(Supplement C):208. https://doi.org/10.1016/S0257-8972(02)00209-8. http://www.sciencedirect.com/science/article/pii/S0257897202002098 (Proceedings of the 12th International Conference on SMMIB)

  21. Samat MH, Ali AMM, Taib MFM, Hassan OH, Yahya MZA (2016) Results Phys 6:891. https://doi.org/10.1016/j.rinp.2016.11.006. http://www.sciencedirect.com/science/article/pii/S221137971630208X

  22. Sun C, Smith SC (2012) J Phys Chem C 116(5):3524. https://doi.org/10.1021/jp208948x

    Article  CAS  Google Scholar 

  23. Lira E, Hansen JØ, Merte LR, Sprunger PT, Li Z, Besenbacher F, Wendt S (2013) Top Catal 56(15):1460. https://doi.org/10.1007/s11244-013-0141-z

    Article  CAS  Google Scholar 

  24. Zhang L, Cosandey F, Persaud R, Madey TE (1999) Surf Sci 439(1):73. https://doi.org/10.1016/S0039-6028(99)00734-7. http://www.sciencedirect.com/science/article/pii/S0039602899007347

  25. Galhenage RP, Ammal SC, Yan H, Duke AS, Tenney SA, Heyden A, Chen DA (2012) J Phys Chem C 116(46):24616. https://doi.org/10.1021/jp307888p

    Article  CAS  Google Scholar 

  26. Chen Y, Tian G, Pan K, Tian C, Zhou J, Zhou W, Ren Z, Fu H (2012) Dalton Trans. 41(3):1020. https://doi.org/10.1039/C1DT11540E

    Article  CAS  Google Scholar 

  27. Vittadini A, Selloni A (2002) J Chem Phys 117(1):353. https://doi.org/10.1063/1.1481376

    Article  CAS  Google Scholar 

  28. Pan X, Xu YJ (2013) J Phys Chem C 117(35):17996. https://doi.org/10.1021/jp4064802

    Article  CAS  Google Scholar 

  29. Gong XQ, Selloni A, Dulub O, Jacobson P, Diebold U (2008) J Am Chem Soc 130(1):370. https://doi.org/10.1021/ja0773148

    Article  CAS  Google Scholar 

  30. Zhou Y, Muhich CL, Neltner BT, Weimer AW, Musgrave CB (2012) J Phys Chem C 116(22):12114. https://doi.org/10.1021/jp302273m

    Article  CAS  Google Scholar 

  31. Han Y, Liu Cj, Ge Q (2006) J Phys Chem B 110(14):7463. https://doi.org/10.1021/jp0608574

    Article  CAS  Google Scholar 

  32. Han Y, Liu Cj, Ge Q (2007) J Phys Chem C 111(44):16397. https://doi.org/10.1021/jp075602k

    Article  CAS  Google Scholar 

  33. Xu C, Lai X, Zajac GW, Goodman DW (1997) Phys Rev B 56:13464. https://doi.org/10.1103/PhysRevB.56.13464

    Article  CAS  Google Scholar 

  34. Negra MD, Nicolaisen NM, Li Z, Møller PJ (2003) Surf Sci 540(1):117. https://doi.org/10.1016/S0039-6028(03)00817-3. http://www.sciencedirect.com/science/article/pii/S0039602803008173

  35. San-Miguel M, Oviedo J, Sanz J (2007) Phys Rev Lett 99(6):066102

    Article  CAS  Google Scholar 

  36. Zhao W, Lin H, Li Y, Zhang Y, Huang X, Chen W (2012) J Nat Gas Chem 21(5):544. https://doi.org/10.1016/S1003-9953(11)60403-9. http://www.sciencedirect.com/science/article/pii/S1003995311604039

  37. Ong SV, Khanna SN (2012) J Phys Chem C 116(4):3105. https://doi.org/10.1021/jp212504x

    Article  CAS  Google Scholar 

  38. Sanz JF, Márquez A (2007) J Phys Chem C 111(10):3949. https://doi.org/10.1021/jp0639952

    Article  CAS  Google Scholar 

  39. Zhang J, Zhang M, Han Y, Li W, Meng X, Zong B (2008) J Phys Chem C 112(49):19506. https://doi.org/10.1021/jp8036523

    Article  CAS  Google Scholar 

  40. Zhou J, Kang YC, Chen DA (2003) Surf Sci 537(1):L429. https://doi.org/10.1016/S0039-6028(03)00646-0. http://www.sciencedirect.com/science/article/pii/S0039602803006460

  41. Tanner RE, Goldfarb I, Castell MR, Briggs GAD (2001) Surf Sci 486(3):167. https://doi.org/10.1016/S0039-6028(01)01032-9. http://www.sciencedirect.com/science/article/pii/S0039602801010329

  42. Fujikawa K, Suzuki S, Koike Y, Chun WJ, Asakura K (2006) Surf Sci 600(10):117. https://doi.org/10.1016/j.susc.2006.03.019. http://www.sciencedirect.com/science/article/pii/S0039602806002639

  43. Thilagam A, Simpson DJ, Gerson AR (2011) J Phys Condens Matter 23(2):25901. http://stacks.iop.org/0953-8984/23/i=2/a=025901

  44. Martsinovich N, Jones DR, Troisi A (2010) J Phys Chem C 114(51):22659. https://doi.org/10.1021/jp109756g

    Article  CAS  Google Scholar 

  45. Zhu HX, Zhou PX, Li X, Liu JM (2014) Phys Lett A 378(36):2719. https://doi.org/10.1016/j.physleta.2014.07.029. http://www.sciencedirect.com/science/article/pii/S0375960114007361

  46. Wang Y, Doren DJ (2005) Solid State Commun 136(3):142. https://doi.org/10.1016/j.ssc.2005.07.014. http://www.sciencedirect.com/science/article/pii/S0038109805006393

  47. Anisimov VI, Aryasetiawan F, Lichtenstein AI (1997) J Phys Condens Matter 9(4):767. http://stacks.iop.org/0953-8984/9/i=4/a=002

  48. Morgan BJ, Scanlon DO, Watson GW (2009) J Mater Chem 19(29):5175. https://doi.org/10.1039/B905028K

    Article  CAS  Google Scholar 

  49. Zhang YF, Lin W, Li Y, Ding KN, Li JQ (2005) J Phys Chem B 109(41):19270. https://doi.org/10.1021/jp0523625

    Article  CAS  Google Scholar 

  50. Di Valentin C, Pacchioni G, Selloni A (2006) Phys Rev Lett 97:166803. https://doi.org/10.1103/PhysRevLett.97.166803

    Article  Google Scholar 

  51. Long R, English NJ (2010) ChemPhysChem 11(12):2606. https://doi.org/10.1002/cphc.201000329

    Article  CAS  Google Scholar 

  52. Dompablo MEAd, Morales-García A, Taravillo M (2011) J Chem Phys 135(5):54503. https://doi.org/10.1063/1.3617244

    Article  Google Scholar 

  53. Portillo-Vélez NS, Olvera-Neria O, Hernández-Pérez I, Rubio-Ponce A (2013) Surf Sci 616:115. https://doi.org/10.1016/j.susc.2013.06.006. http://www.sciencedirect.com/science/article/pii/S0039602813001787

  54. Curnan MT, Kitchin JR (2015) J Phys Chem C 119(36):21060. https://doi.org/10.1021/acs.jpcc.5b05338

    Article  CAS  Google Scholar 

  55. Calzado CJ, Hernández NC, Sanz JF (2008) Phys Rev B 77:045118. https://doi.org/10.1103/PhysRevB.77.045118

    Article  Google Scholar 

  56. Rubio-Ponce A, Conde-Gallardo A, Olguín D (2008) Phys Rev B 78:035107. https://doi.org/10.1103/PhysRevB.78.035107

    Article  Google Scholar 

  57. Park SG, Magyari-Köpe B, Nishi Y (2010) Phys Rev B 82:115109. https://doi.org/10.1103/PhysRevB.82.115109

    Article  Google Scholar 

  58. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169. https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  59. Kresse G, Furthmüller J (1996) Comput Mater Sci 6(1):15. https://doi.org/10.1016/0927-0256(96)00008-0. http://www.sciencedirect.com/science/article/pii/0927025696000080

  60. Kresse G, Joubert D (1999) Phys Rev B 59:1758. https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  61. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  62. Blöchl PE (1994) Phys Rev B 50:17953. https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  63. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  64. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57:1505. https://doi.org/10.1103/PhysRevB.57.1505

    Article  CAS  Google Scholar 

  65. Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F (2006) Phys Rev B 73:045112. https://doi.org/10.1103/PhysRevB.73.045112

    Article  Google Scholar 

  66. Jr GEJ, Boatner LA, Budai JD, Jeong BS, Norton DP (2003) J Appl Phys 93(12):9537. https://doi.org/10.1063/1.1573737

    Article  Google Scholar 

  67. Ellis DE, Benesh GA, Byrom E (1977) Phys Rev B 16:3308. https://doi.org/10.1103/PhysRevB.16.3308

    Article  CAS  Google Scholar 

  68. Cheng H, Selloni A (2009) Phys Rev B 79:092101. https://doi.org/10.1103/PhysRevB.79.092101

    Article  Google Scholar 

  69. Piotrowski MJ, Ungureanu CG, Tereshchuk P, Batista KEA, Chaves AS, Guedes-Sobrinho D, Da Silva JLF (2016) J Phys Chem C 120(50):28844. https://doi.org/10.1021/acs.jpcc.6b10404

    Article  CAS  Google Scholar 

  70. Mackay AL (1962) Acta Crystallogr 15(9):916. https://doi.org/10.1107/S0365110X6200239X

    Article  CAS  Google Scholar 

  71. Kittel C (2005) Introduction to solid state physics. Wiley, London

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank DGTIC-UNAM for providing us part of the computing facilities and the financial support provided by PAIP-FQUNAM and DGAPA-UNAM under Grant Number IN113116.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Orgaz.

Additional information

Published as part of the special collection of articles “In Memoriam of Claudio Zicovich”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 22669 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castillo-Robles, J.M., Orgaz, E. Structural and optical properties of Ni atoms and \(\hbox {Ni}_{55}\) cluster adsorbed on a rutile \(\hbox {TiO}_{2}\) (110) surface. Theor Chem Acc 137, 31 (2018). https://doi.org/10.1007/s00214-018-2211-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2211-6

Keywords

Navigation