Skip to main content
Log in

Atomic scale behavior, growth morphology and magnetic properties of CoO on MgO(100) surface: a density functional study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this study, we investigated the adsorption behaviors of the Co atom and CoO molecules on the MgO(100) surface, including the diffusion processes based on density functional theory calculations. The structure and growth morphology of the deposited cobalt oxide at various coverage levels as well as the magnetic properties are also discussed. The CoO molecule is found to bind more strongly to the surface compared to the isolated neutral Co atom, which is physically adsorbed on top of the surface oxygen site. Different to the isolated Co atom, the diffusion path of CoO molecule predominantly involves 90° rotation movements about its ends, while the surface hollow site acts as the saddle point for the hopping of the Co atom between two adjacent oxygen sites. A two-dimensional growth mode is observed to be the dominant layer growth mechanism for CoO on the magnesia surface, where the antiferromagnetic state is energetically more favorable compared to the ferromagnetic state. Based on the charge transfer and the density of state distribution, the interaction with the magnesia substrate does not affect the magnetic properties of the CoO monolayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pacchioni G, Valeri S (2012) Oxide ultrathin films: science and technology. Wiley, New York

    Google Scholar 

  2. Ramanathan S (2010) Thin film metal-oxides. Springer, US

    Book  Google Scholar 

  3. Campbell CT (1997) Surf Sci Rep 27:1–111

    Article  CAS  Google Scholar 

  4. Trotochaud L, Mills TJ, Boettcher SW (2013) J Phys Chem Lett 4:931–935

    Article  CAS  Google Scholar 

  5. Li C, Chen YW, Yang SJ, Wu JC (1993) Ind Eng Chem Res 32:1573–1578

    Article  CAS  Google Scholar 

  6. Garbowski E, Guenin M, Marion M-C, Primet M (1990) Appl Catal 64:209–224

    Article  CAS  Google Scholar 

  7. He C, Köhler K (2006) Phys Chem Chem Phys 8:898–905

    Article  CAS  Google Scholar 

  8. Ma J, Michaelides A, Alfe D, Schimka L, Kresse G, Wang E (2011) Phys Rev B 84:033402

    Article  Google Scholar 

  9. Elkoraychy E, Sbiaai K, Mazroui M, Boughaleb Y, Ferrando R (2015) Surf Sci 635:64–69

    Article  CAS  Google Scholar 

  10. Han Y, Evans JW (2015) J Chem Phys 143:164706

    Article  Google Scholar 

  11. Neyman K, Inntam C, Nasluzov V, Kosarev R, Rösch N (2004) Appl Phys A 78:823–828

    Article  CAS  Google Scholar 

  12. Fernandez S, Markovits A, Fuster F, Minot C (2007) J Phys Chem C 111:6781–6788

    Article  CAS  Google Scholar 

  13. Rau IG, Baumann S, Rusponi S, Donati F, Stepanow S, Gragnaniello L, Dreiser J, Piamonteze C, Nolting F, Gangopadhyay S et al (2014) Science 344:988–992

    Article  CAS  Google Scholar 

  14. Kim C, Chung Y-C (2006) IEEE Trans Magn 42:3174–3176

    Article  CAS  Google Scholar 

  15. Jeon J, Yu BD (2014) J Korean Phys Soc 64:554–560

    Article  CAS  Google Scholar 

  16. Jeon J, Yu BD (2013) J Korean Phys Soc 62:79–85

    Article  CAS  Google Scholar 

  17. Park J, Park I, Yu B (2009) J Korean Phys Soc 54:109

    Article  CAS  Google Scholar 

  18. Geneste G, Morillo J, Finocchi F (2002) Appl Surf Sci 188:122–127

    Article  CAS  Google Scholar 

  19. Zayed A, Márquez AM, Sanz JF (2013) J Phys Chem C 117:22714–22722

    Article  CAS  Google Scholar 

  20. Greiner J, Berkowitz A, Weidenborner J (1966) J Appl Phys 37:2149–2155

    Article  CAS  Google Scholar 

  21. Bajdich M, García-Mota M, Vojvodic A, Nørskov JK, Bell AT (2013) J Am Chem Soc 135:13521–13530

    Article  CAS  Google Scholar 

  22. Castleton C, Kullgren J, Hermansson K (2007) J Chem Phys 127:244704–244704

    Article  CAS  Google Scholar 

  23. Kresse G, Hafner J (1993) Phys Rev B 47:558

    Article  CAS  Google Scholar 

  24. Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  25. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  26. Blöchl PE (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  27. Kresse G, Joubert D (1999) Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  28. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  29. Dudarev S, Botton G, Savrasov S, Humphreys C, Sutton A (1998) Phys Rev B 57:1505

    Article  CAS  Google Scholar 

  30. Chen J, Wu X, Selloni A (2011) Phys Rev B 83:245204

    Article  Google Scholar 

  31. Anisimov VI, Zaanen J, Andersen OK (1991) Phys Rev B 44:943

    Article  CAS  Google Scholar 

  32. Pickett W, Erwin S, Ethridge E (1998) Phys Rev B 58:1201

    Article  CAS  Google Scholar 

  33. Mittendorfer F, Weinert M, Podloucky R, Redinger J (2012) Phys Rev Lett 109:015501

    Article  CAS  Google Scholar 

  34. Harris J (1985) Phys Rev B 31:1770

    Article  CAS  Google Scholar 

  35. Geneste G, Morillo J, Finocchi F (2003) Surf Sci 532:508–513

    Article  Google Scholar 

  36. Fuhr JR, Wiese WL (1998) In: CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  37. Bader RF (1985) Acc Chem Res 18:9–15

    Article  CAS  Google Scholar 

  38. Henkelman G, Arnaldsson A, Jónsson H (2006) Comput Mater Sci 36:354–360

    Article  Google Scholar 

  39. Sanville E, Kenny SD, Smith R, Henkelman G (2007) J Comput Chem 28:899–908

    Article  CAS  Google Scholar 

  40. Musolino V, Selloni A, Car R (1997) Preprint arXiv:cond-mat/9705112

  41. Yudanov I, Pacchioni G, Neyman K, Rösch N (1997) J Phys Chem B 101:2786–2792

    Article  CAS  Google Scholar 

  42. Pacchioni G (2013) Phys Chem Chem Phys 15:1737–1757

    Article  CAS  Google Scholar 

  43. Ou X, Wang H, Fan F, Li Z, Wu H (2015) Phys Rev Lett 115:257201

    Article  Google Scholar 

  44. Archer T, Hanafin R, Sanvito S (2008) Phys Rev B 78:014431

    Article  Google Scholar 

  45. Zhang W, Tay HL, Lim SS, Wang Y, Zhong Z, Xu R (2010) Appl Catal B: Environ 95:93–99

    Article  CAS  Google Scholar 

  46. Staemmler V, Fink K (2002) Chem Phys 278:79–87

    Article  CAS  Google Scholar 

  47. Pacchioni G, Rösch N (1996) J Chem Phys 104:7329–7337

    Article  CAS  Google Scholar 

  48. Seminario JM (1996) Recent developments and applications of modern density functional theory, vol 4. Elsevier, Amsterdam

    Book  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support provided by the University of Malaya Research-Grant RG243-12AFR and the computational facilities where these calculations were performed. We would also like to thank Associate Professor Dr. Suhana Binti Mohd. Said of the Chemical Engineering Department, Faculty of Engineering, University of Malaya and Associate Professor Dr. Vannajan Sanghiran Lee of the Chemistry Department, University of Malaya for all the help and support rendered in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ala’ Omar Hasan Zayed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zayed, A.O.H., Zain, S.M. Atomic scale behavior, growth morphology and magnetic properties of CoO on MgO(100) surface: a density functional study. Theor Chem Acc 135, 193 (2016). https://doi.org/10.1007/s00214-016-1948-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1948-z

Keywords

Navigation