Skip to main content
Log in

Adsorption mechanisms of lithium oxides (LixO2) on N-doped graphene: a density functional theory study with implications for lithium–air batteries

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We utilized density functional theory (DFT) study to understand the adsorption mechanism of lithium oxides (LixO2) onto N-doped graphene during oxygen reduction reaction (ORR) for lithium–air batteries. We systematically proposed two possible ORR pathways and examined various adsorption configurations in each system, including for the O2 and Li ORR reactants and the LiO2 and Li2O2 ORR products. The doping of the N atom into graphene was calculated to enhance the adsorption of O2, but to attenuate the adsorption of Li, because of the repulsion between the electron-rich N-doped graphene and the electron-donating Li atom, and the attraction of this N-doped graphene for electronegative O2. Nevertheless, since the adsorption of Li onto N-doped graphene (−1.001 to −0.503 eV) was still stronger than the adsorption of O2 (−0.280 to −0.215 eV), Li should bind N-doped graphene first. Moreover, N-doped graphene was calculated to bind LiO2 (−0.588 eV) more strongly than was pristine graphene (−0.450 eV). Additionally, the Li2O2 configuration that yielded the most stable adsorption on N-doped graphene was calculated to yield an adsorption energy of −0.642 eV, which is more favorable than that for pristine graphene (−0.630 eV). Overall, N-doped graphene was found to strengthen the adsorption of lithium oxides (LixO2) and increase charge transfer to substantial levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) J Phys Chem Lett 1:2193

    Article  CAS  Google Scholar 

  2. Kraytsberg A, Ein-Eli Y (2011) J Power Sources 196:886

    Article  CAS  Google Scholar 

  3. Franco AA, Xue KH (2013) Ecs J Solid State Sci Technol 2:M3084

    Article  CAS  Google Scholar 

  4. Allen MJ, Tung VC, Kaner RB (2010) Chem Rev 110:132

    Article  CAS  Google Scholar 

  5. Xiao J, Mei DH, Li XL, Xu W, Wang DY, Graff GL, Bennett WD, Nie ZM, Saraf LV, Aksay IA, Liu J, Zhang JG (2011) Nano Lett 11:5071

    Article  CAS  Google Scholar 

  6. Yoo E, Zhou HS (2011) ACS Nano 5:3020

    Article  CAS  Google Scholar 

  7. Wang ZL, Xu D, Xu JJ, Zhang LL, Zhang XB (2012) Adv Funct Mater 22:3699

    Article  Google Scholar 

  8. Yoo E, Zhou HS (2014) RSC Adv 4:13119

    Article  CAS  Google Scholar 

  9. Ren XD, Zhu JZ, Du FM, Liu JJ, Zhang WQ (2014) J Phys Chem C 118:22412

    Article  CAS  Google Scholar 

  10. Wang S, Dong SM, Wang J, Zhang LX, Han PX, Zhang CJ, Wang XG, Zhang KJ, Lan ZG, Cui GL (2012) J Mater Chem 22:21051

    Article  CAS  Google Scholar 

  11. Li YL, Wang JJ, Li XF, Geng DS, Banis MN, Li RY, Sun XL (2012) Electrochem Commun 18:12

    Article  CAS  Google Scholar 

  12. Lin ZY, Waller GH, Liu Y, Liu ML, Wong CP (2013) Carbon 53:130

    Article  CAS  Google Scholar 

  13. Li Q, Cao RG, Cho J, Wu G (2014) PCCP 16:13568

    Article  CAS  Google Scholar 

  14. Debart A, Bao J, Armstrong G, Bruce PG (2007) J Power Sources 174:1177

    Article  CAS  Google Scholar 

  15. Lu YC, Xu ZC, Gasteiger HA, Chen S, Hamad-Schifferli K, Shao-Horn Y (2010) J Am Chem Soc 132:12170

    Article  CAS  Google Scholar 

  16. Lu YC, Gasteiger HA, Parent MC, Chiloyan V, Shao-Horn Y (2010) Electrochem Solid State Lett 13:A69

    Article  CAS  Google Scholar 

  17. Choi R, Jung J, Kim G, Song K, Kim YI, Jung SC, Han YK, Song H, Kang YM (2014) Energy Environ Sci 7:1362

    Article  CAS  Google Scholar 

  18. Su DW, Kim HS, Kim WS, Wang GX (2013) J Power Sources 244:488

    Article  CAS  Google Scholar 

  19. Wang YG, Zhou HS (2010) J Power Sources 195:358

    Article  CAS  Google Scholar 

  20. Cheng H, Scott K (2010) J Power Sources 195:1370

    Article  CAS  Google Scholar 

  21. Debart A, Paterson AJ, Bao J, Bruce PG (2008) Angewandte Chemie-Int Edn 47:4521

    Article  CAS  Google Scholar 

  22. Minowa H, Hayashi M, Hayashi K, Kobayashi R, Takahashi K (2013) J Power Sources 244:17

    Article  CAS  Google Scholar 

  23. Chen Y, Zhang Q, Zhang Z, Zhou X, Zhong Y, Yang M, Xie Z, Wei J, Zhou Z (2015) J Mater Chem A 3:17874

    Article  CAS  Google Scholar 

  24. Zhang Z, Bao J, He C, Chen Y, Wei J, Zhou Z (2014) Adv Funct Mater 24:6826

    Article  CAS  Google Scholar 

  25. Jing Y, Zhou Z (2015) ACS Catal 5:4309

    Article  CAS  Google Scholar 

  26. Wei DC, Liu YQ, Wang Y, Zhang HL, Huang LP, Yu G (2009) Nano Lett 9:1752

    Article  CAS  Google Scholar 

  27. Guo BD, Liu QA, Chen ED, Zhu HW, Fang LA, Gong JR (2010) Nano Lett 10:4975

    Article  CAS  Google Scholar 

  28. Sheng ZH, Shao L, Chen JJ, Bao WJ, Wang FB, Xia XH (2011) ACS Nano 5:4350

    Article  CAS  Google Scholar 

  29. Lin YC, Lin CY, Chiu PW (2010) Appl Phys Lett 96:133110

    Article  Google Scholar 

  30. Kresse G, Furthmuller J (1996) Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  31. Kresse G, Furthmuller J (1996) Comp Mater Sci 6:15

    Article  CAS  Google Scholar 

  32. Blochl PE (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  33. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  34. Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54:16533

    Article  CAS  Google Scholar 

  35. Park H, Noh SH, Lee JH, Lee WJ, Jaung JY, Lee SG, Han TH (2015) Sci Rep 5:14163

    Article  CAS  Google Scholar 

  36. Koh W, Lee JH, Lee SG, Choi JI, Jang SS (2015) RSC Adv 5:32819

    Article  CAS  Google Scholar 

  37. Moon HS, Lee JH, Kwon S, Kim IT, Lee SG (2015) Carbon Lett 16:116

    Article  Google Scholar 

  38. Koh W, Choi JI, Lee SG, Lee WR, Jang SS (2011) Carbon 49:286

    Article  CAS  Google Scholar 

  39. Koh W, Choi JI, Jeong E, Lee SG, Jang SS (2014) Curr Appl Phys 14:1748

    Article  Google Scholar 

  40. Kwon S, Lee SG (2015) Carbon Lett 16:198

    Article  Google Scholar 

  41. Koh W, Choi JI, Donaher K, Lee SG, Jang SS (2011) ACS Appl Mater Inter 3:1186

    Article  CAS  Google Scholar 

  42. Koh W, Moon HS, Lee SG, Choi JI, Jang SS (2015) ChemPhysChem 16:789

    Article  CAS  Google Scholar 

  43. Yu Y-X (2013) PCCP 15:16819

    Article  CAS  Google Scholar 

  44. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  Google Scholar 

  45. Manz TA, Sholl DS (2010) J Chem Theory Comput 6:2455

    Article  CAS  Google Scholar 

  46. Lee JH, Kang SG, Moon HS, Park H, Kim IT, Lee SG (2015) Appl Surf Sci 351:193

    Article  CAS  Google Scholar 

  47. Wu DH, Li YF, Zhou Z (2011) Theor Chem Acc 130:209

    Article  CAS  Google Scholar 

  48. Rani P, Jindal VK (2013) RSC Adv 3:802

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2014R1A1A1004096 and 2015R1C1A1A02036472). This work was financially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) through GCRC-SOP (No. 2011-0030013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Geol Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.H., Kang, S.G., Kim, I.T. et al. Adsorption mechanisms of lithium oxides (LixO2) on N-doped graphene: a density functional theory study with implications for lithium–air batteries. Theor Chem Acc 135, 50 (2016). https://doi.org/10.1007/s00214-016-1805-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1805-0

Keywords

Navigation