Skip to main content
Log in

First-principles studies on doped graphene as anode materials in lithium-ion batteries

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Using density functional theory computations, we investigated Li adsorption, diffusion, and desorption in pristine, B- or N-doped graphene. Compared with pristine graphene, B-doping significantly enhances Li adsorption, whereas Li adsorption is slightly weakened on N-doped graphene, which should be attributed to the different electronic structures due to doping. Li diffusion on various graphene systems was also computed through nudged elastic band method, and the results revealed that Li diffusion on N-doped graphene is faster than on pristine and B-doped graphene. Moreover, for Li desorption from the graphene substrate, N-doped graphene showed the lowest desorption barrier. Our results are in agreement with recent experimental reports and also demonstrate that N-doped graphene is a promising anode material with high-rate charge/discharge ability for Li-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhao JJ, Buldum A, Han J, Lu JP (2000) Phys Rev Lett 85:1706–1709

    Article  CAS  Google Scholar 

  2. Meunier V, Kephart J, Roland C, Bernholc J (2002) Phys Rev Lett 88:075506

    Article  Google Scholar 

  3. Gao B, Bower C, Lorentzen JD, Fleming L, Kleinhammes A, Tang XP, McNeil LE, Wu Y, Zhou O (2000) Chem Phys Lett 327:69–75

    Article  CAS  Google Scholar 

  4. Frackowiak E, Béguin F (2002) Carbon 40:1775–1787

    Article  CAS  Google Scholar 

  5. Landi BJ, Ganter MJ, Cress CD, DiLeo RA, Raffaelle RP (2009) Energy Environ Sci 2:638–654

    Article  CAS  Google Scholar 

  6. Liu Y, Yukawa H, Morinaga M (2003) Adv Quantum Chem 42:315–330

    Article  CAS  Google Scholar 

  7. Song B, Yang JW, Zhao JJ, Fang HP (2011) Energy Environ Sci 4:1379–1384

    Article  CAS  Google Scholar 

  8. Geim AK (2009) Science 324:1530–1534

    Article  CAS  Google Scholar 

  9. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669

    Article  CAS  Google Scholar 

  10. Allen MJ, Tung VC, Kaner RB (2009) Chem Rev 110:132–145

    Article  Google Scholar 

  11. Geim AK, Novoselov KS (2007) Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  12. Niyogi S, Bekyarova E, Itkis M, McWilliams J, Hamon M, Haddon R (2006) J Am Chem Soc 128:7720–7721

    Article  CAS  Google Scholar 

  13. Rao CNR, Sood AK, Voggu R, Subrahmanyam KS (2010) J Phys Chem Lett 1:572–580

    Article  CAS  Google Scholar 

  14. Liang MH, Zhi LJ (2009) J Mater Chem 19:5871–5878

    Article  CAS  Google Scholar 

  15. Guo P, Song HH, Chen XH (2009) Electrochem Commun 11:1320–1324

    Article  CAS  Google Scholar 

  16. Lian P, Zhu X, Liang S, Li Z, Yang W, Wang H (2010) Electrochim Acta 55:3909–3914

    Article  CAS  Google Scholar 

  17. Pan DY, Wang S, Zhao B, Wu MH, Zhang HJ, Wang Y, Jiao Z (2009) Chem Mater 21:3136–3142

    Article  CAS  Google Scholar 

  18. Wang GX, Shen XP, Yao J, Park J (2009) Carbon 47:2049–2053

    Article  CAS  Google Scholar 

  19. Uthaisar C, Barone V (2010) Nano Lett 10:2838–2842

    Article  CAS  Google Scholar 

  20. Uthaisar C, Barone V, Peralta JE (2009) J Appl Phys 106:113715

    Article  Google Scholar 

  21. Khantha M, Cordero NA, Molina LM, Alonso JA, Girifalco LA (2004) Phys Rev B 70:125422

    Article  Google Scholar 

  22. Wang XL, Zeng Z, Ahn H, Wang GX (2009) Appl Phys Lett 95:183103

    Article  Google Scholar 

  23. Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G (2009) Nano Lett 9:1752–1758

    Article  CAS  Google Scholar 

  24. Panchakarla LS, Subrahmanyam KS, Saha SK, Govindaraj A, Krishnamurthy HR, Waghmare UV, Rao CNR (2009) Adv Mater 21:4726–4730

    CAS  Google Scholar 

  25. Deng DH, Pan XL, Yu L, Cui Y, Jiang YP, Qi J, Li W-X, Fu Q, Ma XC, Xue QK, Sun GQ, Bao XH (2011) Chem Mater 23:1188–1193

    Article  CAS  Google Scholar 

  26. Zhang CH, Fu L, Liu N, Liu MH, Wang YY, Liu ZF (2011) Adv Mater 23:1020–1024

    Article  CAS  Google Scholar 

  27. Reddy ALM, Srivastava A, Gowda SR, Gullapalli H, Dubey M, Ajayan PM (2010) ACS Nano 4:6337–6342

    Article  CAS  Google Scholar 

  28. Way BM, Dahn JR (1994) J Electrochem Soc 141:907–912

    Article  CAS  Google Scholar 

  29. Weydanz WJ, Way BM, Vanbuuren T, Dahn JR (1994) J Electrochem Soc 141:900–906

    Article  CAS  Google Scholar 

  30. Morita M, Hanada T, Tsutsumi H, Matsuda Y, Kawaguchi M (1992) J Electrochem Soc 139:1227–1230

    Article  CAS  Google Scholar 

  31. Kurita N (2000) Carbon 38:65–75

    Article  CAS  Google Scholar 

  32. Endo M, Hayashi T, Hong S-H, Enoki T, Dresselhaus MS (2001) J Appl Phys 90:5670–5674

    Article  CAS  Google Scholar 

  33. Zhou Z, Gao X, Yan J, Song D, Morinaga M (2004) J Phys Chem B 108:9023–9026

    Article  CAS  Google Scholar 

  34. Zhou Z, Gao X, Yan J, Song D, Morinaga M (2004) Carbon 42:2677–2682

    Article  CAS  Google Scholar 

  35. Zhou Z, Zhao J, Gao X, Chen Z, Yan J, Schleyer PVR, Morinaga M (2005) Chem Mater 17:992–1000

    Article  CAS  Google Scholar 

  36. Zhao JJ, Wen B, Zhou Z, Wang JL, Chen ZF, Schleyer PVR (2005) Chem Phys Lett 415:323–326

    Article  CAS  Google Scholar 

  37. Li YF, Zhou Z, Wang LB (2008) J Chem Phys 129:104703

    Article  CAS  Google Scholar 

  38. Delley B (1990) J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  39. Delley B (2000) J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  40. Perdew JP, Wang Y (1992) Phys Rev B 46:12947–12954

    Article  Google Scholar 

  41. Wang HB, Zhang CJ, Liu ZH, Wang L, Han PX, Xu HX, Zhang KJ, Dong SM, Yao JH, Cui GL (2011) J Mater Chem 21:5430–5434

    Article  CAS  Google Scholar 

  42. Lherbier A, Blase X, Niquet Y-M, Triozon F, Roche S (2008) Phys Rev Lett 101:036808

    Article  Google Scholar 

  43. Li YF, Zhou Z, Shen PW, Chen ZF (2009) ACS Nano 3:1952–1958

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Innovation Experiment Program for University Students (101005531) in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Zhou.

Additional information

Dedicated to Professor Shigeru Nagase on the occasion of his 65th birthday and published as part of the Nagase Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, D.H., Li, Y.F. & Zhou, Z. First-principles studies on doped graphene as anode materials in lithium-ion batteries. Theor Chem Acc 130, 209–213 (2011). https://doi.org/10.1007/s00214-011-0961-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-0961-5

Keywords

Navigation