Skip to main content
Log in

A second-order multi-reference quasiparticle-based perturbation theory

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The purpose of this paper is to introduce a second-order perturbation theory derived from the mathematical framework of the quasiparticle-based multi-reference coupled-cluster approach (Rolik and Kállay in J Chem Phys 141:134112, 2014). The quasiparticles are introduced via a unitary transformation which allows us to represent a complete active space reference function and other elements of an orthonormal multi-reference basis in a determinant-like form. The quasiparticle creation and annihilation operators satisfy the fermion anti-commutation relations. As the consequence of the many-particle nature of the applied unitary transformation these quasiparticles are also many-particle objects, and the Hamilton operator in the quasiparticle basis contains higher than two-body terms. The definition of the new theory strictly follows the form of the single-reference many-body perturbation theory and retains several of its beneficial properties like the extensivity. The efficient implementation of the method is briefly discussed, and test results are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Amor N, Maynau D (1998) Chem Phys Lett 286:211

    Article  Google Scholar 

  2. Andersson K, Malmquist P, Roos BO (1992) J Chem Phys 96:1218

    Article  CAS  Google Scholar 

  3. Andersson K, Malmquist P, Roos BO, Sadlej AJ, Wolinski K (1990) J Chem Phys 94:5483

    Article  CAS  Google Scholar 

  4. Angeli C, Cimiraglia R, Evangelisti S, Leininger T, Malrieu JP (2001) J Chem Phys 114:10252

    Article  CAS  Google Scholar 

  5. Angeli C, Cimiraglia R, Pastore M (2007) Theor Chim Acta 117:743

    Article  CAS  Google Scholar 

  6. Bartlett RJ (1981) Annu Rev Phys Chem 32:359

    Article  CAS  Google Scholar 

  7. Brandow BH (1967) Rev Mod Phys 39:771

    Article  CAS  Google Scholar 

  8. Celani P, Werner HJ (2000) J Chem Phys 112:5546

    Article  CAS  Google Scholar 

  9. Čížek J (1966) J Chem Phys 45:4256

    Article  Google Scholar 

  10. Čížek J (1969) Adv Chem Phys 14:35

    Google Scholar 

  11. Čížek J, Paldus J (1971) Int J Quantum Chem 5:359

    Article  Google Scholar 

  12. Das S, Kállay M, Mukherjee D (2010) J Chem Phys 133:234110

    Article  Google Scholar 

  13. Das S, Mukherjee D, Kállay M (2010) J Chem Phys 132:074103

    Article  Google Scholar 

  14. Finley JP (1998) J Chem Phys 108:1081

    Article  CAS  Google Scholar 

  15. Füsti-Molnár L, Szalay P (1996) J Chem Phys 100:6288

    Article  Google Scholar 

  16. Ghosh P, Chattopadhyay S, Jana D, Mukherjee D (2002) Int J Mol Sci 3:733

    Article  CAS  Google Scholar 

  17. Hirao K (1993) Chem Phys Lett 201:59

    Article  CAS  Google Scholar 

  18. Hose G, Kaldor U (1979) J Phys B 12:3827

    Article  CAS  Google Scholar 

  19. Jankowski K, Rubiniec K, Sterna P (1998) Mol Phys 94:29

    Article  CAS  Google Scholar 

  20. Kállay M, Surján PR (2000) J Chem Phys 113:1359

    Article  Google Scholar 

  21. Kállay M, Surján PR (2001) J Chem Phys 115:2945

    Article  Google Scholar 

  22. Kállay M, Szalay PG, Surján PR (2002) J Chem Phys 117:980

    Article  Google Scholar 

  23. Kozlowski PM, Davidson ER (1994) Chem Phys Lett 222:615

    Article  CAS  Google Scholar 

  24. Lindgren I (1974) J Phys B 7:2241

    Article  Google Scholar 

  25. Mahapatra U, Datta B, Mukherjee D (1999) J Chem Phys 110:6171

    Article  CAS  Google Scholar 

  26. Malrieu J, Durand P, Daudey JP (1985) J Phys A 18:809

    Article  CAS  Google Scholar 

  27. Meissner L, Bartlett RJ (1989) J Chem Phys 91:4800

    Article  CAS  Google Scholar 

  28. Møller C, Plesset M (1934) Phys Rev 46:618

    Article  Google Scholar 

  29. Murphy RB, Messmer RP (1991) Chem Phys Lett 183:443

    Article  CAS  Google Scholar 

  30. Nakano H (1993) J Chem Phys 99:7983

    Article  CAS  Google Scholar 

  31. Oliphant N, Adamowicz L (1991) J Chem Phys 94:1229

    Article  CAS  Google Scholar 

  32. Olsen J, Roos BO, Jørgensen P, Jensen HJA (1988) J Chem Phys 89:2185

    Article  CAS  Google Scholar 

  33. Paldus J, Čížek J, Keating BA (1973) Phys Rev A 8:640

    Article  CAS  Google Scholar 

  34. Piecuch P, Oliphant N, Adamowicz L (1993) J Chem Phys 99:1875

    Article  CAS  Google Scholar 

  35. Purvis G, Shepard R, Brown F, Bartlett R (1983) Int J Quantum Chem 23:835

    Article  CAS  Google Scholar 

  36. Purvis GD, Bartlett RJ (1978) Int J Quantum Chem 14:561

    Article  Google Scholar 

  37. Rolik Z, Kállay M (2014) J Chem Phys 141:134112

    Article  Google Scholar 

  38. Rolik Z, Szabados Á (2009) Int J Quantum Chem 109:2554

    Article  CAS  Google Scholar 

  39. Rolik Z, Szabados Á, Surján PR (2003) J Chem Phys 119:1922

    Article  CAS  Google Scholar 

  40. Sokolov AY, Chan GKL (2015) J Chem Phys 142:124107

    Article  Google Scholar 

  41. Szabados A, Rolik Z, Tóth G, Surján PR (2005) J Chem Phys 122:114104

    Article  Google Scholar 

  42. Szalay PG, Müller T, Gidofalvi G, Lischka H, Shepard R (2012) Chem Rev 112:108

    Article  CAS  Google Scholar 

  43. Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M, et al. (2012) Molpro, version 2012.1, a package of ab initio programs. See

  44. Wolinski K, Pulay P (1989) J Chem Phys 90:3647

    Article  CAS  Google Scholar 

  45. Zaitevskii A, Malrieu JP (1995) Chem Phys Lett 233:597

    Article  Google Scholar 

Download references

Acknowledgments

Financial support has been provided by the Hungarian Scientific Research Fund (OTKA), Grant No. PD108451.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Rolik.

Additional information

Published as part of the special collection of articles “Festschrift in honour of P. R. Surjan”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rolik, Z., Kállay, M. A second-order multi-reference quasiparticle-based perturbation theory. Theor Chem Acc 134, 143 (2015). https://doi.org/10.1007/s00214-015-1746-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1746-z

Keywords

Navigation