Skip to main content

Advertisement

Log in

Effects of repeated treatment with methcathinone, mephedrone, and fenfluramine on intracranial self-stimulation in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Synthetic cathinones constitute a class of abused drugs that can act at dopamine, norepinephrine, and serotonin transporters (DAT, NET, and SERT, respectively). Intracranial self-stimulation (ICSS) is a preclinical procedure that can be used to evaluate abuse potential of drugs, and prior studies have indicated that abuse-related ICSS effects of monoamine-transporter substrates, including some synthetic cathinones, are positively correlated with drug selectivity for DAT vs. SERT. Abuse potential of drugs can also be influenced by regimens of repeated drug exposure, but the role of repeated exposure on abuse-related ICSS effects of synthetic cathinones has not been examined.

Objectives

This study used ICSS to evaluate effects of repeated treatment with the DAT>SERT substrate methcathinone, the DAT<SERT substrate fenfluramine, and the DAT≈SERT substrate mephedrone.

Methods

Male Sprague-Dawley rats were trained in a frequency-rate ICSS procedure, and different groups were used to evaluate effects of methcathinone, mephedrone, and fenfluramine before, during, and after regimens of repeated treatment with the designated drug.

Results

Before repeated treatment, methcathinone produced dose-dependent and abuse-related ICSS facilitation, fenfluramine produced dose-dependent ICSS depression, and mephedrone produced mixed effects that included both facilitation and depression. Chronic treatment produced no change in effects of methcathinone, but complete tolerance to effects of fenfluramine. For mephedrone, chronic treatment produced partial tolerance to ICSS depression and enhanced expression of ICSS facilitation.

Conclusions

Repeated exposure to mixed-action DAT≈SERT substrates such as mephedrone can result in increased abuse potential due to sustained expression of DAT-mediated abuse-related effects and tolerance to SERT-mediated abuse-limiting effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altarifi AA, Negus SS (2011) Some determinants of morphine effects on intracranial self-stimulation in rats: dose, pretreatment time, repeated treatment, and rate dependence. Behav Pharmacol 22:663–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altarifi AA, Miller LL, Negus SS (2012) Role of micro-opioid receptor reserve and micro-agonist efficacy as determinants of the effects of micro-agonists on intracranial self-stimulation in rats. Behav Pharmacol 23:678–692

    Article  CAS  PubMed  Google Scholar 

  • Altarifi AA, Rice KC, Negus SS (2013) Abuse-related effects of micro-opioid analgesics in an assay of intracranial self-stimulation in rats: modulation by chronic morphine exposure. Behav Pharmacol 24:459–470

    Article  CAS  PubMed  Google Scholar 

  • Bauer CT, Banks ML, Blough BE, Negus SS (2013) Use of intracranial self-stimulation to evaluate abuse-related and abuse-limiting effects of monoamine releasers in rats. Br J Pharmacol 168:850–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer CT, Banks ML, Negus SS (2014) The effect of chronic amphetamine treatment on cocaine-induced facilitation of intracranial self-stimulation in rats. Psychopharmacology 231:2461–2470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer CT, Banks ML, Blough BE, Negus SS (2015) Role of 5-HT(2)C receptors in effects of monoamine releasers on intracranial self-stimulation in rats. Psychopharmacology 232:3249–3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann MH, Solis E Jr, Watterson LR, Marusich JA, Fantegrossi WE, Wiley JL (2014) Baths salts, spice, and related designer drugs: the science behind the headlines. J Neurosci 34:15150–15158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonano JS, Glennon RA, De Felice LJ, Banks ML, Negus SS (2014) Abuse-related and abuse-limiting effects of methcathinone and the synthetic “bath salts” cathinone analogs methylenedioxypyrovalerone (MDPV), methylone and mephedrone on intracranial self-stimulation in rats. Psychopharmacology 231:199–207

    Article  CAS  PubMed  Google Scholar 

  • Bonano JS, Banks ML, Kolanos R, Sakloth F, Barnier ML, Glennon RA, Cozzi NV, Partilla JS, Baumann MH, Negus SS (2015) Quantitative structure-activity relationship analysis of the pharmacology of para-substituted methcathinone analogues. Br J Pharmacol 172:2433–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradbury S, Bird J, Colussi-Mas J, Mueller M, Ricaurte G, Schenk S (2014) Acquisition of MDMA self-administration: pharmacokinetic factors and MDMA-induced serotonin release. Addict Biol 19:874–884

    Article  CAS  PubMed  Google Scholar 

  • Carlezon WA Jr, Chartoff EH (2007) Intracranial self-stimulation (ICSS) in rodents to study the neurobiology of motivation. Nat Protoc 2:2987–2995

    Article  CAS  PubMed  Google Scholar 

  • Cryan JF, Hoyer D, Markou A (2003) Withdrawal from chronic amphetamine induces depressive-like behavioral effects in rodents. Biol Psychiatry 54:49–58

    Article  CAS  PubMed  Google Scholar 

  • Dahl CB, Gotestam KG (1989) Lack of self-administration of different fenfluramine isomers in rats. Addict Behav 14:239–247

    Article  CAS  PubMed  Google Scholar 

  • De Felice LJ, Glennon RA, Negus SS (2014) Synthetic cathinones: chemical phylogeny, physiology, and neuropharmacology. Life Sci 97:20–26

    Article  CAS  PubMed  Google Scholar 

  • Do J, Schenk S (2013) Self-administered MDMA produces dose- and time-dependent serotonin deficits in the rat brain. Addict Biol 18:441–447

    Article  CAS  PubMed  Google Scholar 

  • Freitas K, Carroll FI, Negus SS (2016) Comparison of effects produced by nicotine and the alpha4beta2-selective agonist 5-I-A-85380 on intracranial self-stimulation in rats. Exp Clin Psychopharmacol 24:65–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grim TW, Wiebelhaus JM, Morales AJ, Negus SS, Lichtman AH (2015) Effects of acute and repeated dosing of the synthetic cannabinoid CP55,940 on intracranial self-stimulation in mice. Drug Alcohol Depend 150:31–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillhouse TM, Porter JH, Negus SS (2014) Dissociable effects of the noncompetitive NMDA receptor antagonists ketamine and MK-801 on intracranial self-stimulation in rats. Psychopharmacology 231:2705–2716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • John WS, Martin TJ, Nader MA (2017) Behavioral determinants of cannabinoid self-administration in Old World Monkeys. Neuropsychopharmacology 42:1522–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson AR, Banks ML, Selley DE, Negus SS (2018) Amphetamine maintenance differentially modulates effects of cocaine, methylenedioxypyrovalerone (MDPV), and methamphetamine on intracranial self-stimulation and nucleus accumbens dopamine in rats. Neuropsychopharmacology 43:1753–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kintz P, Mangin P (1992) Toxicological findings after fatal fenfluramine self-poisoning. Hum Exp Toxicol 11:51–52

    Article  CAS  PubMed  Google Scholar 

  • Kleven MS, Schuster CR, Seiden LS (1988) Effect of depletion of brain serotonin by repeated fenfluramine on neurochemical and anorectic effects of acute fenfluramine. J Pharmacol Exp Ther 246:822–828

    CAS  PubMed  Google Scholar 

  • Kornetsky C, Esposito RU (1979) Euphorigenic drugs: effects on the reward pathways of the brain. Fed Proc 38:2473–2476

    CAS  PubMed  Google Scholar 

  • Kwilasz AJ, Negus SS (2012) Dissociable effects of the cannabinoid receptor agonists Delta9-tetrahydrocannabinol and CP55940 on pain-stimulated versus pain-depressed behavior in rats. J Pharmacol Exp Ther 343:389–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazenka MF, Blough BE, Negus SS (2016) Preclinical abuse potential assessment of flibanserin: effects on intracranial self-stimulation in female and male rats. J Sex Med 13:338–349

    Article  PubMed  PubMed Central  Google Scholar 

  • Legakis LP, Negus SS (2018) Repeated morphine produces sensitization to reward and tolerance to antiallodynia in male and female rats with chemotherapy-induced neuropathy. J Pharmacol Exp Ther 365:9–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller LL, Altarifi AA, Negus SS (2015a) Effects of repeated morphine on intracranial self-stimulation in male rats in the absence or presence of a noxious pain stimulus. Exp Clin Psychopharmacol 23:405–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller LL, Leitl MD, Banks ML, Blough BE, Negus SS (2015b) Effects of the triple monoamine uptake inhibitor amitifadine on pain-related depression of behavior and mesolimbic dopamine release in rats. Pain 156:175–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • National Research Council (2011) Guide for the Care and Use of Laboratory Animals, 8th ed. The National Academies Press, Washington D.C.

  • Negus SS, Banks ML (2017) Decoding the structure of abuse potential for new psychoactive substances: structure-activity relationships for abuse-related effects of 4-substituted methcathinone analogs. Curr Top Behav Neurosci 32:119–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negus SS, Miller LL (2014) Intracranial self-stimulation to evaluate abuse potential of drugs. Pharmacol Rev 66:869–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negus SS, Gatch MB, Mello NK, Zhang X, Rice K (1998) Behavioral effects of the delta-selective opioid agonist SNC80 and related compounds in rhesus monkeys. J Pharmacol Exp Ther 286:362–375

    CAS  PubMed  Google Scholar 

  • Negus SS, Rosenberg MB, Altarifi AA, O'Connell RH, Folk JE, Rice KC (2012) Effects of the delta opioid receptor agonist SNC80 on pain-related depression of intracranial self-stimulation (ICSS) in rats. J Pain 13:317–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olds ME, Yuwiler A (1992) Effects of acute and chronic fenfluramine on self-stimulation and its facilitation by amphetamine. Eur J Pharmacol 216:363–372

    Article  CAS  PubMed  Google Scholar 

  • Potter DN, Damez-Werno D, Carlezon WA Jr, Cohen BM, Chartoff EH (2011) Repeated exposure to the kappa-opioid receptor agonist salvinorin A modulates extracellular signal-regulated kinase and reward sensitivity. Biol Psychiatry 70:744–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid LD (1987) Tests involving pressing for intracranial stimulation as an early procedure for screening the likelihood of addiction of opioids and other drugs. In: Bozarth MJ (ed) Methods of assessing the reinforcing properties of abused drugs. Springer-Verlag, Berlin, pp 391–420

    Chapter  Google Scholar 

  • Riday TT, Kosofsky BE, Malanga CJ (2012) The rewarding and locomotor-sensitizing effects of repeated cocaine administration are distinct and separable in mice. Neuropharmacology 62:1858–1866

    Article  CAS  PubMed  Google Scholar 

  • Robinson JE, Agoglia AE, Fish EW, Krouse MC, Malanga CJ (2012) Mephedrone (4-methylmethcathinone) and intracranial self-stimulation in C57BL/6J mice: comparison to cocaine. Behav Brain Res 234:76–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg MB, Carroll FI, Negus SS (2013) Effects of monoamine reuptake inhibitors in assays of acute pain-stimulated and pain-depressed behavior in rats. J Pain 14:246–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, Partilla JS (2001) Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 39:32–41

    Article  CAS  PubMed  Google Scholar 

  • Rowland N, Carlton J (1983) Different behavioral mechanisms underlie tolerance to the anorectic effects of fenfluramine and quipazine. Psychopharmacology 81:155–157

    Article  CAS  PubMed  Google Scholar 

  • Rowland NE, Carlton J (1986) Tolerance to fenfluramine anorexia: fact or fiction? Appetite 7(7 Suppl):71–83

    Article  CAS  PubMed  Google Scholar 

  • Schenk S (2009) MDMA self-administration in laboratory animals: a summary of the literature and proposal for future research. Neuropsychobiology 60:130–136

    Article  CAS  PubMed  Google Scholar 

  • Schenk S, Hely L, Lake B, Daniela E, Gittings D, Mash DC (2007) MDMA self-administration in rats: acquisition, progressive ratio responding and serotonin transporter binding. Eur J Neurosci 26:3229–3236

    Article  PubMed  Google Scholar 

  • Schulteis G, Markou A, Gold LH, Stinus L, Koob GF (1994) Relative sensitivity to naloxone of multiple indices of opiate withdrawal: a quantitative dose-response analysis. J Pharmacol Exp Ther 271:1391–1398

    CAS  PubMed  Google Scholar 

  • Suyama JA, Sakloth F, Kolanos R, Glennon RA, Lazenka MF, Negus SS, Banks ML (2016) Abuse-related neurochemical effects of para-substituted methcathinone analogs in rats: microdialysis studies of nucleus accumbens dopamine and serotonin. J Pharmacol Exp Ther 356:182–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van de Wetering R, Schenk S (2017) Repeated MDMA administration increases MDMA-produced locomotor activity and facilitates the acquisition of MDMA self-administration: role of dopamine D2 receptor mechanisms. Psychopharmacology 234:1155–1164

    Article  CAS  PubMed  Google Scholar 

  • Vivero LE, Anderson PO, Clark RF (1998) A close look at fenfluramine and dexfenfluramine. J Emerg Med 16:197–205

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Joharchi N, Fletcher PJ, Sellers EM, Higgins GA (1995) Further studies to examine the nature of dexfenfluramine-induced suppression of heroin self-administration. Psychopharmacology 120:134–141

    Article  CAS  PubMed  Google Scholar 

  • Watterson LR, Hood L, Sewalia K, Tomek SE, Yahn S, Johnson CT, Wegner S, Blough BE, Marusich JA, Olive MF (2012) The reinforcing and rewarding effects of methylone, a synthetic cathinone commonly found in “bath salts”. J Addict Res Ther Suppl 9

  • Watterson LR, Kufahl PR, Nemirovsky NE, Sewalia K, Grabenauer M, Thomas BF, Marusich JA, Wegner S, Olive MF (2014) Potent rewarding and reinforcing effects of the synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV). Addict Biol 19:165–174

    Article  CAS  PubMed  Google Scholar 

  • Wee S, Woolverton WL (2006) Self-administration of mixtures of fenfluramine and amphetamine by rhesus monkeys. Pharmacol Biochem Behav 84:337–343

    Article  CAS  PubMed  Google Scholar 

  • Wiebelhaus JM, Walentiny DM, Beardsley PM (2016) Effects of acute and repeated administration of oxycodone and naloxone-precipitated withdrawal on intracranial self-stimulation in rats. J Pharmacol Exp Ther 356:43–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young AM, Woods JH (1981) Maintenance of behavior by ketamine and related compounds in rhesus monkeys with different self-administration histories. J Pharmacol Exp Ther 218:720–727

    CAS  PubMed  Google Scholar 

  • Young AM, Herling S, Woods JH (1981) History of drug exposure as a determinant of drug self-administration. NIDA Res Monogr 37:75–88

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants R01 DA033930 and F30 DA037649.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Negus.

Ethics declarations

Ethics statement

All animal use protocols were approved by the Virginia Commonwealth University Institutional Animal Care and Use Committee.

Additional information

This article belongs to a Special Issue on Bath Salts

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suyama, J.A., Banks, M.L. & Negus, S.S. Effects of repeated treatment with methcathinone, mephedrone, and fenfluramine on intracranial self-stimulation in rats. Psychopharmacology 236, 1057–1066 (2019). https://doi.org/10.1007/s00213-018-5029-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-018-5029-y

Keywords

Navigation