Skip to main content

Tests Involving Pressing for Intracranial Stimulation as an Early Procedure for Screening Likelihood of Addiction of Opioids and Other Drugs

  • Chapter
Methods of Assessing the Reinforcing Properties of Abused Drugs

Abstract

On the basis that the medial forebrain bundle system of the anterior brainstem is a major component of the system whose activity is positive affect, it is submitted that any drug that would increase activity in that system has a high risk of becoming the focus of an addiction. When an increase in activity of that system is a contingency of an act (such as imbibing, inhaling, snorting, or injecting), then that act will occur more and more frequently (i.e., positive reinforcement occurs) and this is a basis for an addiction. The potential for a drug to increase activity in the system is often manifested by measuring the lever pressing of rats for a fixed intensity of electrical stimulation of the system. Drugs, therefore, can be screened for their addiction likelihood by observing their effects on pressing for brain stimulation.

The term “abuse liability” is extraordinarily confusing, particularly in the context of this chapter. Discussing all of the problems with the term is beyond the scope of this chapter. It will be sufficient to say here, first, we are concerned with addiction liability. Second, the word liability has two meanings: likelihood and debt. In this context, and perhaps the entire book, it seems that we are attempting to assess addiction likelihood rather than addiction debt or abuse (albeit a likely consequence of addiction). Consequently, my topic is the use of procedures involving ICS in establishing likelihood of addiction. In accordance with modern theory of addiction, particularly opioid addiction (Smith & Lane, 1983), an addiction likelihood, in turn, is strongly related to the potential for a drug to be positively reinforcing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, W. J., Lorens, S. A., & Mitchell, C. L. (1972). Morphine enhances lateral hypothalamic self-stimulation in the rat. Proceedings of the Society of Experimental Biology and Medicine, 140, 770–771.

    CAS  Google Scholar 

  • Amir, S., Solomon, R., & Amit, Z. (1979). The effect of acute and chronic naloxone administration on motor activation in the rat. Neuropharmacology, 18, 171–173.

    PubMed  CAS  Google Scholar 

  • Beaman, C., Hunter, G. A., & Reid, L. D. (1984). Diprenorphine, an antagonist of opioid-analgesia elicits a positive affective state in rats. Bulletin of the Psychonomic Society, 22, 354–355.

    CAS  Google Scholar 

  • Becker, B. M., & Reid, L. D. (1977). Changes in pressing for intracranial stimulation (ICS) after prolonged ICS. Physiological Psychology, 5, 58–62.

    Google Scholar 

  • Belluzzi, J. D., & Stein, L. (1977). Enkephalin may mediate euphoria and drive-reduction reward. Nature, 266, 556–558.

    PubMed  CAS  Google Scholar 

  • Bermudez-Rattoni, F., Cruz-Morales, S., & Reid, L. D. (1983). Addictive agents and intracranial stimulation (ICS): Novel antagonist and agonists of morphine and pressing for ICS. Pharmacology Biochemistry & Behavior, 18, 777–784.

    CAS  Google Scholar 

  • Bogacz, J., Laurent, J., & Olds, J. (1965). Dissociation of self-stimulation and epileptiform activity. Electroencephalography & Clinical Neurophysiology, 19, 75–87.

    CAS  Google Scholar 

  • Bower, G. H., & Miller, N. E. (1958). Rewarding and punishing effects from stimulating the same place in the rat’s brain. Journal of Comparative and Physiological Psychology, 51, 669–674.

    PubMed  CAS  Google Scholar 

  • Bozarth, M. A. (1978). Intracranial self-stimulation as an index of opioid addiction liability: An evaluation. Unpublished master’s thesis, Rensselaer Polytechnic Institute, Troy, NY.

    Google Scholar 

  • Bozarth, M. A. (1983). Opiate reward mechanisms mapped by intracranial self-administration. In J. E. Smith & J. D. Lane (Eds.), Neurobiology of opiate reward mechanisms (pp. 331–359). Amsterdam: Elsevier/North Holland Biomedical Press.

    Google Scholar 

  • Bozarth, M. A., Gerber, G. J., & Wise, R. A. (1980). Intracranial self-stimulation as a technique to study the rewarding properties of drugs of abuse. Pharmacology Biochemistry & Behavior, 13(Suppl. 1), 245–247.

    Google Scholar 

  • Bozarth, M. A., & Reid, L. D. (1977). Addictive agents and intracranial stimulation (ICS): Naloxone blocks morphine’s acceleration of pressing for ICS. Bulletin of the Psychonomic Society, 10, 478–480.

    CAS  Google Scholar 

  • Breuker E., Dingledine R., & Iversen, L. L. (1976). Evidence for naloxone and opiates as GABA antagonists. British Journal of Pharmacology, 120, 458.

    Google Scholar 

  • Brown, D. R., & Holtzman, S. E. (1981). Suppression of drinking by naloxone in the rat: A further characterization. European Journal of Pharmacology, 69, 331–340.

    PubMed  CAS  Google Scholar 

  • Buckwalter, M. M., Gibson, W. E., Reid, L. D., & Porter, P. B. (1967). Combining positive and negative intracranial reinforcement. Journal of Comparative and Physiological Psychology, 65, 329–331.

    Google Scholar 

  • Bush, E. D., Bush, M. F., Miller, M. A., & Reid, L. D. (1976). Addictive agents and intracranial stimulation: Daily morphine and lateral hypothalamic self-stimulation. Physiological Psychology, 4, 79–85.

    Google Scholar 

  • Casper, N. J., & Reid, L. (1975). Complex contingencies. Physiological Psychology, 3, 9–13.

    Google Scholar 

  • Collaer, M. L., Magnuson, D. J., & Reid, L. D. (1977). Addictive agents and intracranial stimulation (ICS): Pressing for ICS before and after self-administration of sweetened morphine solutions. Physiological Psychology, 5, 425–428.

    Google Scholar 

  • Collins, R. J., Weeks, J. R., Cooper, M. M., Good, P. I., & Russell, R. R. (1984). Prediction of abuse liability of drugs using IV self-stimulation by rats. Psychopharmacology, 82, 6–13.

    PubMed  CAS  Google Scholar 

  • Cooper, S. J., & Holtzman, S. E. (1983). Patterns of drinking in the rat following administration of opiate antagonists. Pharmacology Biochemistry & Behavior, 19, 505–511.

    CAS  Google Scholar 

  • Cox, B. M. (1983). Endogenous opioid peptides: A guide to structures and terminology. Life Sciences, 31, 1645–1658.

    Google Scholar 

  • Crow, T. J. (1970). Enhancement by cocaine of intracranial self-stimulation in the rat. Life Science, 9, 375–381.

    CAS  Google Scholar 

  • Cruz-Morales, S., & Reid, L. D. (1980). Addictive agents and intracranial stimulation (ICS): Morphine, naloxone, and pressing for amygdaloid ICS. Bulletin of the Psychonomic Society, 16, 199–200.

    CAS  Google Scholar 

  • Deneau, G. A., Yanagita, T., & Seevers, M. H. (1969). Self-administration of psychoactive substances by the monkey: A measure of psychological dependence. Psychopharmaco 1 ogia, 16, 30–48.

    CAS  Google Scholar 

  • Deutsch, J. A., & Howarth, C. I. (1963). Some tests of a theory of intracranial self-stimulation. Psychological Review, 70, 446–460.

    Google Scholar 

  • Esposito, R., & Kornetsky, C. (1977). Morphine lowering of self-stimulation thresholds: Lack of tolerance with long-term administration. Science, 195, 189–191.

    PubMed  CAS  Google Scholar 

  • Esposito, R., & Kornetsky, C. (1978). Opioids and rewarding brain stimulation. Neuroscience, & Biobehavioral Reviews, 2, 115–122.

    CAS  Google Scholar 

  • Farber, P. D., & Reid, L. D. (1976). Addictive agents and intracranial stimulation (ICS): Daily morphine and pressing for combinations of positive and negative ICS. Physiological Psychology, 4, 262–268.

    Google Scholar 

  • Franklin, K. B. J., & Robertson, A. (1982). Effects and interactions of naloxone and amphetamine on self-stimulation of the prefrontal cortex and dorsal tegmentum. Pharmacology Biochemistry & Behavior, 16, 433–436.

    CAS  Google Scholar 

  • Gerber, G. J., Bozarth, M. A., & Wise, R. A. (1981). Small-dose intravenous heroin facilitates hypothalamic self-stimulation without response suppression in rats. Life Science, 28, 557–562.

    CAS  Google Scholar 

  • Gibson, W. E., Reid, L. D., Sakai, M., & Porter, P. B. (1965). Intracranial reinforcement compared with sugar-water reinforcement. Science, 148, 1357–1358.

    PubMed  CAS  Google Scholar 

  • Glick, S. D., Weaver, L. M., & Meibach, R. C. (1982). Asymmetrical effects of morphine and naloxone on reward mechanisms. Psychopharmacology, 78, 219–224.

    PubMed  CAS  Google Scholar 

  • Goldstein, A. (1978). Opiate receptors and opioid peptides: A ten year overview. In M. A. Lipton, A. DiMascio, K. F. Killam (Eds.), Psychopharmacology: A generation of progress (pp. 1157–1563). New York: Raven Press.

    Google Scholar 

  • Heath, R. G. (1964). Pleasure response of human beings to direct stimulation of the brain: Physiologic and psychodynamic consideration. In R. G. Heath (Ed.), The role of pleasure in behavior (pp. 219–243). New York: Hoeber.

    Google Scholar 

  • Hipps, P. P., Eveland, M. R., Meyer, E. R., Sherman, W. R., & Cicero, T. J. (1976). Moss fragmentography of morphine: Relationship between brain levels’ and analgesic activity. Journal of Pharmacology and Experimental Therapeutics, 196, 642–648.

    PubMed  CAS  Google Scholar 

  • Holtzman, S. G. (1976). Comparison of the effect of morphine, pentazocine, cyclazocine and amphetamine on intra-cranial self-stimulation in the rat. Psychopharmacologia, 46, 223–227.

    PubMed  CAS  Google Scholar 

  • Hunsicker, J. P., & Reid, L. D. (1974). The “priming effect” in conventionally reinforced rats. Journal of Comparative and Physiological Psychology, 87, 618–621.

    Google Scholar 

  • Hunter, G. A., Jr., & Reid, L. D. (1983). Assaying addiction liability of opioids. Life Sciences, 33(Suppl. 1), 393–396.

    PubMed  CAS  Google Scholar 

  • Iversen, S. D. (1983). Brain endorphins and reward function: Some thoughts and speculation. In J. E. Smith & J. D. Lane (Eds.), Neurobiology of opiate reward mechanisms (pp. 439–468). Amsterdam: Elsevier/North Holland Biomedical Press.

    Google Scholar 

  • Jacobowitz, D. M., & Palkovits, M. (1974). Topographic atlas of catecholamine acetylcholinesterase-containing neurons in the rat brain. I. Forebrain (telencephalon, diencephalon). Journal of Comparative Neurology, 157, 13–28.

    PubMed  CAS  Google Scholar 

  • Kamei, G., Yoshinobu, M., & Schimizu, M. (1974). Effects of psychotropic drugs on hypothalamic self-stimulation behavior in rats. Japanese Journal of Pharmacology, 24, 613–619.

    PubMed  CAS  Google Scholar 

  • Katz, R. J. (1980). The temporal structure of motivation. Behavioral and Neural Biology, 30, 148–159.

    PubMed  CAS  Google Scholar 

  • Katz, R. J. (1981). Identification of a novel class of central reward sites showing a delayed and cumulative response to opiate blockade. Pharmacology Biochemistry & Behavior, 15, 131–134.

    CAS  Google Scholar 

  • Kayan, S., Woods, L. A., & Mitchell, C. L. (1971) Morphine-induced hyperalgesia in rats tested on the hot plate. Journal of Pharmacology and Experimental Therapeutics, 177, 509–513.

    PubMed  CAS  Google Scholar 

  • Keesey, (1964). Duration of stimulation and reward properties of hypothalamic stimulation. Journal of Comparative and Physiological Psychology, 58, 201–207.

    PubMed  CAS  Google Scholar 

  • Kimble, G. A. (1961). Hilgard and Marquis’ conditioning and learning. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Koob, G. F., Spector, N. H., & Meyerhoff, J. L. (1975). Effects of heroin on lever pressing for intracranial self-stimulation, food, and water in the rat. Psychopharmaco1ogia, 42, 231–234.

    CAS  Google Scholar 

  • Liebman, J. M. (1983). Discriminating between reward and performances: A critical review of intracranial self-stimulation methodology. Neuroscience & Behavioral Reviews, 7, 45–72.

    CAS  Google Scholar 

  • Lorens, S. A., & Mitchell, C. L. (1973). Influence of morphine on lateral hypothalamic self-stimulation in the rat. Psychopharmacologia, 32, 271–277.

    PubMed  CAS  Google Scholar 

  • Lorens, S. A., & Sainati, S. M. (1978). Naloxone blocks the excitatory effect of ethanol and chlordiazepoxide on lateral hypothalamic self-stimulation behavior. Life Sciences, 23, 1359–1364.

    PubMed  CAS  Google Scholar 

  • Marcus, R., & Kornetsky, C. (1974). Negative and positive intracranial reinforcement thresholds: Effects of morphine. Psychopharmacologia, 38, 1–13.

    CAS  Google Scholar 

  • Mclntire, R. W., & Wright, J. E. (1965). Parameters related to response rate for septal and medial forebrain bundle stimulation. Journal of Comparative and Physiological Psychology, 59, 131–134.

    Google Scholar 

  • Miller, D. E., Reid, L. D., & Porter, P. B. (1967). Delayed punishment of positively reinforced bar presses. Psychological Reports, 22, 1073–1077.

    Google Scholar 

  • Mucha, R. F., & Iversen, S. D. (1985). Reinforcing properties of morphine and naloxone revealed by conditioned place preference: A procedural examination. Psychopharmacology, 82, 241–247.

    Google Scholar 

  • Nelsen, J. M., & Kornetsky, C (1972). Morphine induced EEG changes in central motivational systems: Evidence for single dose tolerance. Fifth International Congress of Pharmacology, 166.

    Google Scholar 

  • Olds, J. (1962). Hypothalamic substrates of reward. Physiological Reviews, 42, 554–604.

    PubMed  CAS  Google Scholar 

  • Olds, J., & Milner, P. (1954). Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. Journal of Comparative and Physiological Psychology, 47, 419–427

    PubMed  CAS  Google Scholar 

  • Olds, J., & Travis, R. P. (1960). Effects of chlorpromazine, meprobamate, pentobarbital and morphine on self-stimulation. Journal of Pharmacology and Experimental Therapeutics, 128, 397–404.

    PubMed  CAS  Google Scholar 

  • Olds, M. E. (1966). Facilitory action of diazepam and chlordiazepoxide on hypothalamic reward behavior. Journal of Comparative Physiology and Psychology, 62, 136–140.

    CAS  Google Scholar 

  • Olds, M. E. (1970). Comparative effects of amphetamine, scopolamine, chlordiazepoxide and diphenylhydantoin on operant and extinction behaviour with brain stimulation and food reward. Neuropharmaco1ogy, 9, 519–532.

    CAS  Google Scholar 

  • Pearl, J., Aceto, M. D., & Harris, L. D. (1968). Prevention of writhing and other effects of narcotics and narcotic antagonists in mice. Journal of Pharmacology and Experimental Therapeutics, 160, 217–230.

    PubMed  CAS  Google Scholar 

  • Perry, W., Esposito, R. U., & Kornetsky, C. (1981). Effects of chronic naloxone treatment on brain-stimulation reward. Pharmacology Biochemistry & Behavior, 14, 247–250.

    CAS  Google Scholar 

  • Pert, A. (1975). Effects of opiates on rewarding and aversive brain stimulation in the rat. Problems of Drug Dependence, 963–973.

    Google Scholar 

  • Pilcher, C. W. T., Jones, S. M., & Browne, J. (1982). Rhythmic nature of naloxone-induced aversions and nociception in rats. Life Sciences, 31, 1249–1252.

    PubMed  CAS  Google Scholar 

  • Pollerberg, G. E., Costa, T., Sherman, G. T., Herz, A., & Reid, L. D. (1983). Opioid antinociception and positive reinforcement are mediated by different types of opioid receptors. Life Sciences, 33, 1549–1559.

    PubMed  CAS  Google Scholar 

  • Reid, L. D. (1967). Reinforcement from direct stimulation of the brain. Unpublished doctoral dissertation, University of Utah, Salt Lake City.

    Google Scholar 

  • Reid, L. D., & Bozarth, M. A. (1978). Addictive agents and pressing for intracranial stimulation (ICS): The effects of various opioids on pressing for ICS. Problems of Drug Dependence, 729–741.

    Google Scholar 

  • Reid, L. D., Gibson, W. E., Gledhill, S. M., & Porter, P. B. (1964). Anticonvulsant drugs and self-stimulation behavior. Journal of Comparative and Physiological Psychology, 58, 353–356.

    Google Scholar 

  • Reid, L. D., & Porter, P. B. (1965). Reinforcement from direct electrical stimulation of the brain. Rocky Mountain Psychologist, 1, 3–22.

    Google Scholar 

  • Reid, L. D., & Siviy, S. M. (1982). Administration of antagonists of morphine and endorphin reveal endorphinergic involvement in reinforcement processes. In J. E. Smith & J. D. Lane (Eds.), Neurobiology of opiate reward mechanisms (pp. 257–279). Amsterdam: Elsevier/North Holland Biomedical Press.

    Google Scholar 

  • Riley, A. L., & Baril, L. L. (1 976). Conditioned taste aversion: A bibliography. Animal Learning & Behavior, 4(Suppl.), 15–35.

    Google Scholar 

  • Rossi, N. A., & Reid, L. D. (1976). Affective states associated with morphine injections. Physiological Psychology, 4, 269–274.

    Google Scholar 

  • Sakai, M., Reid, L. D., & Porter, P. B. (1965). Why is reinforcing brain stimulation turned off? In Proceedings of the 73rd Annual Convention of the American Psychological Society (pp. 155–156).

    Google Scholar 

  • Sandberg, D. E., & Segal, M. (1978). Pharmacological analysis of analgesia and self-stimulation elicited by electrical stimulation of catecholamine nuclei in the rat brain. Brain Research, 152, 529–542.

    PubMed  CAS  Google Scholar 

  • Schnitzer, S. B., Reid, L. D., & Porter, P. B. (1965). Electrical intracranial stimulation as a primary reinforcer for cats. Psychological Reports, 16, 335–338.

    PubMed  CAS  Google Scholar 

  • Schuster, C. R., & Thompson, T. (1969). Self-administration of and behavioral dependence on drugs. Annual Review of Pharmacology, 9, 483–502.

    PubMed  CAS  Google Scholar 

  • Simon, E. J. (1982). History. In J. B. Malick & R. M. S. Bell (Eds.), Endorphins: Chemistry, physiology, pharmacology, and clinical relevance (pp. 1–8). New York: Marcel Decke

    Google Scholar 

  • Siviy, S. M., Calcagnetti, D. J., & Reid, L. D. (1982). A temporal analysis of naloxone’s suppressant effect on drinking. Pharmacology Biochemistry & Behavior, 16, 173–175.

    CAS  Google Scholar 

  • Smith, J. E., Co, C., & Läne, J. D. (1984). Limbic acetylcholine turnover rates correlated with rat morphine-seeking behaviors. Pharmacology Biochemistry & Behavior, 20, 429–442.

    CAS  Google Scholar 

  • Smith, J. E., & Lane, J. D. (Eds.) (1983). Neurobiology of opiate reward mechanisms. Amsterdam: Else vi er /North Holland Biomedical Press.

    Google Scholar 

  • Snyder, S. H. (1980). Brain peptides as neurotransmitters. Science, 209, 976–983.

    PubMed  CAS  Google Scholar 

  • Solomon, R. L., & Corbit, J. D. (1974). An opponent process theory of motivation: Temporal dynamics of affect. Psychological Review, 81, 119–145.

    PubMed  CAS  Google Scholar 

  • Stapleton, J. H. (1979). Naloxone suppression of intracranial self-stimulation: Evidence for the involvement of endogenous opioids in the modulation of intracranial reward. Unpublished master’s thesis, Rensselaer Polytechnic Institute, Troy, NY.

    Google Scholar 

  • Stapleton, J. M., Merriman, V. J., Coogle, C. L., Gelbard, S. D., & Reid, L. D. (1979). Naloxone reduces pressing for intracranial stimulation of sites in the periaqueductal gray area, accumbens nucleus, substantia nigra, and lateral hypothalamus. Physiological Psychology, 7, 427–436.

    CAS  Google Scholar 

  • Stein, L. (1962). Effects and interactions of imipramine, chlorpromazine, reserpine, and amphetamine on self-stimulation: Possible neurophysiological basis of depression. In J. Wortis (Ed.), Recent advances in biological psychiatry (pp. 288–308). New York: Plenum Press.

    Google Scholar 

  • Stein, L. (1978). Reward transmitters: Catecholamines and opioid peptides. In M. A. Lipton, A. DiMa&cio, & K. F. Killam (Eds.), Psychopharmacology: A generation of progress (pp. 569–581). New York: Raven Press.

    Google Scholar 

  • Stein, L., & Ray, O. S. (1960). Brain stimulation reward “thresholds” seif-determined in rat. Psychopharmacologia, 1, 251–256.

    PubMed  CAS  Google Scholar 

  • Thompson, T., & Schuster, C. R., (1964). Morphine self-administration, food reinforcement and avoidance behavior in rhesus monkeys. Psychopharmacologia, 5, 57–94.

    Google Scholar 

  • Valenstein, E. S. (1964). Problems of measurement and interpretation with reinforcing brain stimulation. Psychological Review, 71, 415–437.

    PubMed  CAS  Google Scholar 

  • Valenstein, E. S., & Beer, B. (1961). Unipolar and bipolar electrodes in self-stimulation experiments. American Journal of Physiology, 201, 1181–1186.

    PubMed  CAS  Google Scholar 

  • van der Kooy, D., LePiane, F. E., & Phillips, A. E. (1977). Apparent independence of opiate reinforcement and electrical self-stimulation systems in rat brain. Life Sciences, 29, 981–986.

    Google Scholar 

  • Ward, S. J., Pierson, A. K., & Michne, W. F. (1983). Multiple opioid receptor profile in vitro and activity in vivo of the potent opioid antagonist Win 44,441–3. Life Sciences, 33(Suppl. 1), 303–306.

    PubMed  CAS  Google Scholar 

  • Wasden, R. E., Reid, L. D., & Porter, P. B. (1965). Overnight performance decrements with intracranial reinforcement. Psychological Reports, 16, 653–658.

    PubMed  CAS  Google Scholar 

  • Wauquier, A., Gilbert, H., Clincke, C., & Franson, J. F. (1983). Parameter selection in a rate free test of brain self-stimulation: Towards an alternative interpretation of drug effects. Behavioural Brain Research, 7, 155–1 64.

    Google Scholar 

  • Weber, E., Evans, C. J., & Barchas, J. D. (1983). Multiple endogenous ligands for opioid receptors. Trends in Neuroseience, 6, 333–336.

    CAS  Google Scholar 

  • Weeks, J. R. (1962). Experimental morphine addiction: Method for automatic intravenous injections in unrestrained rats. Science, 138, 143–144.

    PubMed  CAS  Google Scholar 

  • Weibel, S. L., & Wolf, H. H. (1979). Opiate modification of intracranial self-stimulation in the rat. Pharmacology Biochemistry & Behavior, 10, 71–78.

    CAS  Google Scholar 

  • Wise, R. A. (1980). Action of drugs of abuse on brain reward systems. Pharmacology Biochemistry & Behavior, 13(Suppl. 1), 213–223.

    Google Scholar 

  • Wise, R. A. (1982a). Neuroleptics and operant behavior: The anhedonia hypothesis. The Behavioral and Brain Sciences, 5, 39–53.

    Google Scholar 

  • Wise, R. A. (1982b). Hypotheses of neuroleptic action: Levels of progress. The Behavioral and Brain Sciences, 5, 78–87.

    Google Scholar 

  • Wise, R. A. (1983). Brain neuronal systems mediating reward processes. In J. E. Smith & J. D. Lane (Eds.), Neurobiology of opiate reward mechanisms (pp. 405–437). Amsterdam: Elsevier/North Holland Biomedical Press.

    Google Scholar 

  • Woolverton, W. L., & Schuster, C. R. (1983). Behavioral and pharmacological aspects of opioid dependence: Mixed agonist-antagonists. Pharmacological Reviews, 35, 33–52.

    PubMed  CAS  Google Scholar 

  • Yardin, E., Guarini, V., & Gallistel, C. (1983). Unilaterally activated systems in rats self-stimulating at sites in the medial forebrain bundle, medial prefrontal cortex, or locus coeruleus. Brain Research, 266, 39–50.

    Google Scholar 

  • Young, P. T. (1967). Affective arousal: Some implications. American Psychologist, 22, 32–40.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Reid, L.D. (1987). Tests Involving Pressing for Intracranial Stimulation as an Early Procedure for Screening Likelihood of Addiction of Opioids and Other Drugs. In: Bozarth, M.A. (eds) Methods of Assessing the Reinforcing Properties of Abused Drugs. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4812-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4812-5_19

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9163-3

  • Online ISBN: 978-1-4612-4812-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics