Skip to main content

Advertisement

Log in

Reinforcement enhancement by nicotine in adult rats: behavioral selectivity and relation to mode of delivery and blood nicotine levels

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Reinforcement-enhancing effects of nicotine occur in human subjects and laboratory rats. However, the doses used in animal studies typically exceed smoking-associated levels of exposure, and generalized behavioral activation by nicotine can potentially confound data interpretation.

Methods

During daily 60-min sessions, male adult rats pressed an “active” lever to illuminate a brief cue light. Pressing on either the active or inactive lever retracted both levers for 60 s. Nicotine (0.025–0.2 mg/kg) was given either by continuous intravenous (IV) infusion, or spaced IV pulses (3-s or 30-s/pulse), or pre-session subcutaneous (SC) injection.

Results

Almost all rats responded preferentially for the cue light for several weeks. After several home-cage nicotine injections, reinforcement enhancement occurred even within the first nicotine test session. Nicotine increased active lever responding without altering inactive lever responding, with effects reliably observed at doses as low as 0.1 mg/kg SC or 0.1 mg/kg/session IV. Within the session, the 0.1 mg/kg dose maximally increased active lever responding by 2–3-fold, coinciding with serum levels of 25 ng/ml. Intravenous nicotine (tested at 0.1 mg/kg/60-min session) was equally effective whether delivered by continuous infusion or in a series of equally spaced 0.003 mg/kg pulses each of 3-s or 30-s duration.

Conclusions

Low doses of nicotine can potentiate responding for a primary sensory reinforcer without producing a generalized increase in lever pressing. Reinforcer enhancement by nicotine generalized to several modes of drug delivery, appeared to track circulating levels of drug, and occurred even at serum levels within the daytime range of moderate cigarette smokers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barr RS, Pizzagalli DA, Culhane MA, Goff DC, Evins AE (2008) A single dose of nicotine enhances reward responsiveness in nonsmokers: implications for development of dependence. Biol Psychiatry 63:1061–1065

    Article  CAS  PubMed  Google Scholar 

  • Barrett ST, Bevins RA (2013) Nicotine enhances operant responding for qualitatively distinct reinforcers under maintenance and extinction conditions. Pharmacol Biochem Behav 114-115:9–15

    Article  Google Scholar 

  • Barrett ST, Odum AL (2011) The effects of repeated exposure on the reward-enhancing effects of nicotine. Behav Pharmacol 22:283–290

    Article  CAS  PubMed  Google Scholar 

  • Barrett ST, Geary TN, Steiner AN, Bevins RA (2016) Sex differences and the role of dopamine receptors in the reward-enhancing effects of nicotine and bupropion. Psychopharmacology 234:187–198

    Article  PubMed  Google Scholar 

  • Caggiula AR, Donny EC, White AR, Chaudhri N, Booth S, Gharib MA, Hoffman A, Perkins KA, Sved AF (2002) Environmental stimuli promote the acquisition of nicotine self-administration in rats. Psychopharmacology 163:230–237

    Article  CAS  PubMed  Google Scholar 

  • Caggiula AR, Donny EC, Palmatier MI, Liu X, Chaudhri N, Sved AF (2009) The role of nicotine in smoking: a dual-reinforcement model. Neb Symp Motiv 55:91–109

    Article  Google Scholar 

  • Chaudhri N, Caggiula AR, Donny EC, Booth S, Gharib MA, Craven LA, Allen SS, Sved AF, Perkins KA (2005) Sex differences in the contribution of nicotine and nonpharmacological stimuli to nicotine self-administration in rats. Psychopharmacology 180:258–266

    Article  CAS  PubMed  Google Scholar 

  • Chaudhri N, Caggiula AR, Donny EC, Booth S, Gharib M, Craven L, Palmatier MI, Liu X, Sved AF (2007) Self-administered and noncontingent nicotine enhance reinforced operant responding in rats: impact of nicotine dose and reinforcement schedule. Psychopharmacology 190:353–362

    Article  CAS  PubMed  Google Scholar 

  • Clarke PBS (1987) Nicotine and smoking: a perspective from animal studies. Psychopharmacology 92:135–143

    CAS  PubMed  Google Scholar 

  • Clarke PBS, Kumar R (1983) Nicotine does not improve discrimination of brain stimulation reward by rats. Psychopharmacology 79:271–277

    Article  CAS  PubMed  Google Scholar 

  • Clarke PBS, Kumar R (1984) Effects of nicotine and d-amphetamine on intracranial self-stimulation in a shuttle box test in rats. Psychopharmacology 84:109–114

    Article  CAS  PubMed  Google Scholar 

  • Corrigall WA, Herling S, Coen KM (1988) Evidence for opioid mechanisms in the behavioral effects of nicotine. Psychopharmacology 96:29–35

    Article  CAS  PubMed  Google Scholar 

  • Dawkins L, Powell JH, West R, Powell J, Pickering A (2006) A double-blind placebo controlled experimental study of nicotine: I—effects on incentive motivation. Psychopharmacology 189:355–367

    Article  CAS  PubMed  Google Scholar 

  • Donny EC, Chaudhri N, Caggiula AR, Evans-Martin FF, Booth S, Gharib MA, Clements LA, Sved AF (2003) Operant responding for a visual reinforcer in rats is enhanced by noncontingent nicotine: implications for nicotine self-administration and reinforcement. Psychopharmacology 169:68–76

    Article  CAS  PubMed  Google Scholar 

  • Duke AN, Johnson MW, Reissig CJ, Griffiths RR (2015) Nicotine reinforcement in never-smokers. Psychopharmacology 232:4243–4252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulton HG, Barrett SP (2008) A demonstration of intravenous nicotine self-administration in humans? Neuropsychopharmacology 33:2042–2043

    Article  PubMed  Google Scholar 

  • Ghosheh O, Dwoskin LP, Li WK, Crooks PA (1999) Residence times and half-lives of nicotine metabolites in rat brain after acute peripheral administration of [2′-(14)C]nicotine. Drug Metab Dispos 27:1448–1455

    CAS  PubMed  Google Scholar 

  • Grimm JW, Ratliff C, North K, Barnes J, Collins S (2012) Nicotine increases sucrose self-administration and seeking in rats. Addict Biol 17:623–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillem K, Vouillac C, Azar MR, Parsons LH, Koob GF, Cador M, Stinus L (2005) Monoamine oxidase inhibition dramatically increases the motivation to self-administer nicotine in rats. J Neurosci 25:8593–8600

    Article  CAS  PubMed  Google Scholar 

  • Harris AC, Mattson C, LeSage MG, Keyler DE, Pentel PR (2010) Comparison of the behavioral effects of cigarette smoke and pure nicotine in rats. Pharmacol Biochem Behav 96:217–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hieda Y, Keyler DE, VandeVoort JT, Niedbala RS, Raphael DE, Ross CA, Pentel PR (1999) Immunization of rats reduces nicotine distribution to brain. Psychopharmacology 143:150–157

    Article  CAS  PubMed  Google Scholar 

  • Hirschhorn ID, Rosecrans JA (1974) Studies on the time course and the effect of cholinergic and adrenergic receptor blockers on the stimulus effect of nicotine. Psychopharmacology 40:109–120

    Article  CAS  Google Scholar 

  • Hughes JR, Callas PW (2010) Data to assess the generalizability of samples from studies of adult smokers. Nicotine Tob Res 12:73–76

    Article  PubMed  Google Scholar 

  • Jensen KP, DeVito E, Valentine G, Gueorguieva R, Sofuoglu M (2016) IV nicotine self-administration in smokers: dose-response function and sex differences. Neuropsychopharmacology 41:2034–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones J, Raiff BR, Dallery J (2010) Nicotine's enhancing effects on responding maintained by conditioned reinforcers are reduced by pretreatment with mecamylamine, but not hexamethonium, in rats. Exp Clin Psychopharmacol 18:350–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitchen I (1987) Statistics in pharmacology: the bloody obvious test. Trends Pharmacol Sci 8:252–253

    Article  Google Scholar 

  • Lawson GM, Hurt RD, Dale LC, Offord KP, Croghan IT, Schroeder DR, Jiang NS (1998) Application of serum nicotine and plasma cotinine concentrations to assessment of nicotine replacement in light, moderate, and heavy smokers undergoing transdermal therapy. J Clin Pharmacol 38:502–509

    Article  CAS  PubMed  Google Scholar 

  • LeSage MG, Keyler DE, Shoeman D, Raphael D, Collins G, Pentel PR (2002) Continuous nicotine infusion reduces nicotine self-administration in rats with 23-h/day access to nicotine. Pharmacol Biochem Behav 72:279–289

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Palmatier MI, Caggiula AR, Donny EC, Sved AF (2007) Reinforcement enhancing effect of nicotine and its attenuation by nicotinic antagonists in rats. Psychopharmacology 194:463–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludbrook J (1998) Multiple comparison procedures updated. Clin Exp Pharmacol Physiol 25:1032–1037

    Article  CAS  PubMed  Google Scholar 

  • Morrison CF (1968) A comparison of the effects of nicotine and amphetamine on DRL performance in the rat. Psychopharmacologia 12:176–180

    Article  CAS  PubMed  Google Scholar 

  • Olausson P, Jentsch JD, Taylor JR (2004a) Nicotine enhances responding with conditioned reinforcement. Psychopharmacology 171:173–178

    Article  CAS  PubMed  Google Scholar 

  • Olausson P, Jentsch JD, Taylor JR (2004b) Repeated nicotine exposure enhances responding with conditioned reinforcement. Psychopharmacology 173:98–104

    Article  CAS  PubMed  Google Scholar 

  • Palmatier MI, Evans-Martin FF, Hoffman A, Caggiula AR, Chaudhri N, Donny EC, Liu X, Booth S, Gharib M, Craven L, Sved AF (2006) Dissociating the primary reinforcing and reinforcement-enhancing effects of nicotine using a rat self-administration paradigm with concurrently available drug and environmental reinforcers. Psychopharmacology 184:391–400

    Article  CAS  PubMed  Google Scholar 

  • Palmatier MI, Liu X, Matteson GL, Donny EC, Caggiula AR, Sved AF (2007a) Conditioned reinforcement in rats established with self-administered nicotine and enhanced by noncontingent nicotine. Psychopharmacology 195:235–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmatier MI, Matteson GL, Black JJ, Liu X, Caggiula AR, Craven L, Donny EC, Sved AF (2007b) The reinforcement enhancing effects of nicotine depend on the incentive value of non-drug reinforcers and increase with repeated drug injections. Drug Alcohol Depend 89:52–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perkins KA, Karelitz JL, Boldry MC (2017) Nicotine acutely enhances reinforcement from nondrug rewards in humans. Front Psychiatry 8: article 65

  • Pratt JA, Stolerman IP, Garcha HS, Giardini V, Feyerabend C (1983) Discriminative stimulus properties of nicotine: further evidence for mediation at a cholinergic receptor. Psychopharmacology 81:54–60

    Article  CAS  PubMed  Google Scholar 

  • Quick SL, Olausson P, Addy NA, Taylor JR (2014) Repeated nicotine exposure during adolescence alters reward-related learning in male and female rats. Behav Brain Res 261:171–176

    Article  CAS  PubMed  Google Scholar 

  • Raiff BR, Dallery J (2006) Effects of acute and chronic nicotine on responses maintained by primary and conditioned reinforcers in rats. Exp Clin Psychopharmacol 14:296–305

    Article  CAS  PubMed  Google Scholar 

  • Reavill C, Walther B, Stolerman IP, Testa B (1990) Behavioural and pharmacokinetic studies on nicotine, cytisine and lobeline. Neuropharmacology 29:619–624

    Article  CAS  PubMed  Google Scholar 

  • Rollema H, Shrikhande A, Ward KM, Tingley FD III, Coe JW, O'Neill BT, Tseng E, Wang EQ, Mather RJ, Hurst RS, Williams KE, de VM, Cremers T, Bertrand S, Bertrand D (2010) Pre-clinical properties of the alpha4beta2 nicotinic acetylcholine receptor partial agonists varenicline, cytisine and dianicline translate to clinical efficacy for nicotine dependence. Br J Pharmacol 160:334–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose JE, Behm FM, Westman EC, Coleman RE (1999) Arterial nicotine kinetics during cigarette smoking and intravenous nicotine administration: implications for addiction. Drug Alcohol Depend 56:99–107

    Article  CAS  PubMed  Google Scholar 

  • Rose JE, Mukhin AG, Lokitz SJ, Turkington TG, Herskovic J, Behm FM, Garg S, Garg PK (2010) Kinetics of brain nicotine accumulation in dependent and nondependent smokers assessed with PET and cigarettes containing 11C-nicotine. Proc Natl Acad Sci U S A 107:5190–5195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rupprecht LE, Smith TT, Schassburger RL, Buffalari DM, Sved AF, Donny EC (2015) Behavioral mechanisms underlying nicotine reinforcement. Curr Top Behav Neurosci 24:19–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorge RE, Pierre VJ, Clarke PB (2009) Facilitation of intravenous nicotine self-administration in rats by a motivationally neutral sensory stimulus. Psychopharmacology 207:191–200

    Article  CAS  PubMed  Google Scholar 

  • Swalve N, Barrett ST, Bevins RA, Li M (2015) Examining the reinforcement-enhancement effects of phencyclidine and its interactions with nicotine on lever-pressing for a visual stimulus. Behav Brain Res 291:253–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi HL, Martin BR, Aceto MD (1982) Nicotine-induced antinociception in rats and mice: correlation with nicotine brain levels. J Pharmacol Exp Ther 221:91–96

    CAS  PubMed  Google Scholar 

  • Tronci V, Vronskaya S, Montgomery N, Mura D, Balfour DJ (2010) The effects of the mGluR5 receptor antagonist 6-methyl-2-(phenylethynyl)-pyridine (MPEP) on behavioural responses to nicotine. Psychopharmacology 211:33–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner DM (1975) Influence of route of administration on metabolism of [14C]nicotine in four species. Xenobiotica 5:553–561

    Article  CAS  PubMed  Google Scholar 

  • Weaver MT, Sweitzer M, Coddington S, Sheppard J, Verdecchia N, Caggiula AR, Sved AF, Donny EC (2012) Precipitated withdrawal from nicotine reduces reinforcing effects of a visual stimulus for rats. Nicotine Tob Res 14:824–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wing VC, Shoaib M (2010) A second-order schedule of food reinforcement in rats to examine the role of CB1 receptors in the reinforcement-enhancing effects of nicotine. Addict Biol 15:380–392

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by a Natural Science and Engineering Research Council of Canada (NSERC) Discovery Grant (155055, to P.B.S.C), and a Canadian Institutes of Health Research of Canada Operating Grant (MOP-10516, to P.B.S.C.). P.B.S.C. is a member of the Center for Studies in Behavioral Neurobiology at Concordia University, Montreal. The authors have no financial relationship with the organizations that sponsored this research. All experiments comply with the current laws of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul B. S. Clarke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Constantin, A., Clarke, P.B.S. Reinforcement enhancement by nicotine in adult rats: behavioral selectivity and relation to mode of delivery and blood nicotine levels. Psychopharmacology 235, 641–650 (2018). https://doi.org/10.1007/s00213-017-4778-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-017-4778-3

Keywords

Navigation