Skip to main content

Behavioral Mechanisms Underlying Nicotine Reinforcement

  • Chapter
  • First Online:
The Neuropharmacology of Nicotine Dependence

Abstract

Cigarette smoking is the leading cause of preventable deaths worldwide, and nicotine, the primary psychoactive constituent in tobacco, drives sustained use. The behavioral actions of nicotine are complex and extend well beyond the actions of the drug as a primary reinforcer. Stimuli that are consistently paired with nicotine can, through associative learning, take on reinforcing properties as conditioned stimuli. These conditioned stimuli can then impact the rate and probability of behavior and even function as conditioning reinforcers that maintain behavior in the absence of nicotine. Nicotine can also act as a conditioned stimulus (CS), predicting the delivery of other reinforcers, which may allow nicotine to acquire value as a conditioned reinforcer. These associative effects, establishing non-nicotine stimuli as conditioned stimuli with discriminative stimulus and conditioned reinforcing properties as well as establishing nicotine as a CS, are predicted by basic conditioning principles. However, nicotine can also act non-associatively. Nicotine directly enhances the reinforcing efficacy of other reinforcing stimuli in the environment, an effect that does not require a temporal or predictive relationship between nicotine and either the stimulus or the behavior. Hence, the reinforcing actions of nicotine stem both from the primary reinforcing actions of the drug (and the subsequent associative learning effects) as well as the reinforcement enhancement action of nicotine which is non-associative in nature. Gaining a better understanding of how nicotine impacts behavior will allow for maximally effective tobacco control efforts aimed at reducing the harm associated with tobacco use by reducing and/or treating its addictiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abelson PH (1995) Flaws in risk assessments. Science 270:215

    CAS  PubMed  Google Scholar 

  • Adriani W, Spijker S, Deroche-Gamonet V, Laviola G, Le Moal M, Smit AB, Piazza PV (2003) Evidence for enhanced neurobehavioral vulnerability to nicotine during periadolescence in rats. J Neurosci 23:4712–4716

    CAS  PubMed  Google Scholar 

  • Adriani W, Deroche-Gamonet V, Le Moal M, Laviola G, Piazza PVV (2006) Preexposure during or following adolescence differently affects nicotine-rewarding properties in adult rats. Psychopharmacology 184:382–390

    CAS  PubMed  Google Scholar 

  • Amit Z, Brown Z, Rockman G (1977) Possible involvement of acetaldehyde, norepinephrine and their tetrahydroisoquinoline derivatives in the regulation of ethanol self-administration. Drug Alcohol Depend 2:495–500

    CAS  PubMed  Google Scholar 

  • Ator NA, Griffiths RR (2003) Principles of drug abuse liability assessment in laboratory animals. Drug Alcohol Depend 70:S55–S72

    CAS  PubMed  Google Scholar 

  • Attwood AS, Penton-Voak IS, Munafo MR (2009) Effects of acute nicotine administration on ratings of attractiveness of facial cues. Nicotine Tob Res 11:44–48

    CAS  PubMed  Google Scholar 

  • Bardo MT, Green TA, Crooks PA, Dwoskin LP (1999) Nornicotine is self-administered intravenously by rats. Psychopharmacology 146:290–296

    CAS  PubMed  Google Scholar 

  • Barr RS, Pizzagalli DA, Culhane MA, Goff DC, Evins AE (2008) A single dose of nicotine enhances reward responsiveness in nonsmokers: implications for development of dependence. Biol Psychiatry 63:1061–1065

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barret ST, Bevins RA (2013) Nicotine enhances operant responding for qualitatively distinct reinforcers under maintenance and extinction conditions. Pharmacol Biochem Behav 114–115:9–15

    PubMed  Google Scholar 

  • Becker JB, Hu M (2008) Sex differences in drug abuse. Front Neuroendocrinol 29:36–47

    CAS  PubMed Central  PubMed  Google Scholar 

  • Belluzzi JD, Lee AG, Oliff HS, Leslie FM (2004) Age-dependent effects of nicotine on locomotor activity and conditioned place preference in rats. Psychopharmacology 174:389–395

    CAS  PubMed  Google Scholar 

  • Belluzzi JD, Wang R, Leslie FM (2005) Acetaldehyde enhances acquisition of nicotine self-administration in adolescent rats. Neuropsychopharmacology 30:705–712

    CAS  PubMed  Google Scholar 

  • Beninger RJ, Hanson DR, Phillips AG (1980) The acquisition of responding with conditioned reinforcement: effects of cocaine, (+)-amphetamine and pipradrol. Br J Pharmacol 1:149–154

    Google Scholar 

  • Benowitz NL (1990) Pharmacokinetic considerations in understanding nicotine dependence. In: The biology of nicotine dependence, Ciba Foundation Symposium, Wiley, New York

    Google Scholar 

  • Benowitz NL, Hatsukami D (1998) Gender differences in the pharmacology of nicotine addiction. Addict Biol 3:383–404

    CAS  Google Scholar 

  • Berchtold NC, Cribbs DH, Coleman PD, Rogers J, Head E, Kim R, Beach T, Miller C, Troncoso J, Trojanowski JQ (2008) Gene expression changes in the course of normal brain aging are sexually dimorphic. Proc Nat Acad Sci 105:15605–15610

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berlin I, Said S, Spreux-Varoquaux O, Olivares R, Launay JM, Puech AJ (1995) Monoamine oxidase A and B activities in heavy smokers. Biol Psychiatry 38:756–761

    CAS  PubMed  Google Scholar 

  • Berridge KC, Robinson TE (2003) Parsing reward. Trends Neurosci 26:507–513

    Google Scholar 

  • Besheer J, Palmatier MI, Metschke DM, Bevins, RA (2004) Nicotine as a signal for the presence or absence of sucrose reward: a Pavlovian drug appetitive conditioning preparation in rats. Psychopharmacology 172:108–117

    Google Scholar 

  • Bevins RA (2009) Altering the motivational function of nicotine through conditioning processes. Nebr Symp Motiv 55:111–129

    PubMed Central  PubMed  Google Scholar 

  • Bouton ME (2011) Learning and the persistence of appetite: extinction and the motivation to eat and overeat. Physiol Behav 103:51–58

    CAS  PubMed  Google Scholar 

  • Brady KT, Randall CL (1999) Gender differences in substance use disorders. Psychiatr Clin North Am 22:241–252

    CAS  PubMed  Google Scholar 

  • Breslau N, Peterson EL (1996) Smoking cessation in young adults: age at initiation of cigarette smoking and other suspected influences. Am J Public Health 86:214–220

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brielmaier JM, McDonald CG, Smith RF (2007) Immediate and long-term behavioral effects of a single nicotine injection in adolescent and adult rats. Neurotoxicol Teratol 29:74–80

    CAS  PubMed  Google Scholar 

  • Brown Z, Amit Z, Rockman G (1979) Intraventricular self-administration of acetaldehyde, but not ethanol, in naive laboratory rats. Psychopharmacology 64:271–276

    CAS  PubMed  Google Scholar 

  • Busto U, Sellers EM (1986) Pharmacokinetic determinants of drug abuse and dependence. A conceptual perspective. Clin Pharmacokinet 11:144–153

    CAS  PubMed  Google Scholar 

  • Caggiula AR, Donny EC, White AR, Chaudhri N, Booth S, Gharib MA, Sved AF (2001) Cue dependency of nicotine self-administration and smoking. Pharmacol Biochem Behav 70:515–530

    CAS  PubMed  Google Scholar 

  • Caggiula AR, Donny EC, Chaudhri N, Perkins KA, Evans-Martin FF, Sved AF (2002a) Importance of nonpharmacological factors in nicotine self-administration. Physiol Behav 77:683–687

    CAS  PubMed  Google Scholar 

  • Caggiula AR, Donny EC, White AR, Chaudhri N, Booth S, Gharib MA, Sved AF (2002b) Environmental stimuli promote the acquisition of nicotine self-administration in rats. Psychopharmacology 163:230–237

    CAS  PubMed  Google Scholar 

  • Caggiula AR, Donny EC, Palmatier MI, Liu X, Chaudhri N, Sved AF (2009) The role of nicotine in smoking: a dual-reinforcement model. Nebr Symp Motiv 55:91–109

    PubMed Central  PubMed  Google Scholar 

  • Caine SB, Collins GT, Thomsen M, Wright C, Lanier RK, Mello NK (2014) Nicotine-like behavioral effects of the minor tobacco alkaloids nornicotine, anabasine, and anatabine in male rodents. Exp Clin Psychopharmacol 22:9–22

    CAS  PubMed  Google Scholar 

  • Carroll ME, Lynch WJ, Roth ME, Morgan AD, Cosgrove KP (2004) Sex and estrogen influence drug abuse. Trends Pharmacol Sci 25:273–279

    CAS  PubMed  Google Scholar 

  • CDC (2010) Cigarette use among high school students-United States, 1991–2009. Morb Mortal Wkly Rep (MMWR) 59:797

    Google Scholar 

  • CDC (2012) Current cigarette smoking among adults-United States, 2011. Morb Mortal Wkly Rep (MMWR) 61:889–894

    Google Scholar 

  • Chambers RA, Taylor JR, Potenza MN (2003) Developmental neurocircuitry of motivation in adolescence: a critical period of addiction vulnerability. Am J Psychiatry 160:1041–1052

    PubMed Central  PubMed  Google Scholar 

  • Chaudhri N, Caggiula AR, Donny EC, Booth S, Gharib MA, Craven LA, Perkins KA (2005) Sex differences in the contribution of nicotine and nonpharmacological stimuli to nicotine self-administration in rats. Psychopharmacology 180:258–266

    CAS  PubMed  Google Scholar 

  • Chaudhri N, Caggiula AR, Donny EC, Booth S, Gharib M, Craven L, Sved AF (2006a) Operant responding for conditioned and unconditioned reinforcers in rats is differentially enhanced by the primary reinforcing and reinforcement-enhancing effects of nicotine. Psychopharmacology 189:27–36

    CAS  PubMed  Google Scholar 

  • Chaudhri N, Caggiula AR, Donny EC, Palmatier MI, Liu X, Sved AF (2006b) Complex interactions between nicotine and nonpharmacological stimuli reveal multiple roles for nicotine in reinforcement. Psychopharmacology 184:353–366

    CAS  PubMed  Google Scholar 

  • Chaudhri N, Caggiula AR, Donny EC, Booth S, Gharib M, Craven L, Sved SF (2007) Self-administered and noncontingent nicotine enhance reinforced operant responding in rats: impact of nicotine dose and reinforcement schedule. Psychopharmacology 190:353–362

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen H, Matta SG, Sharp BM (2007) Acquisition of nicotine self-administration in adolescent rats given prolonged access to the drug. Neuropsychopharmacology 32:700–709

    CAS  PubMed  Google Scholar 

  • Cheskin LJ, Hess JM, Henningfield J, Gorelick DA (2005) Calorie restriction increases cigarette use in adult smokers. Psychopharmacology 179:430–436

    CAS  PubMed  Google Scholar 

  • Choi K, Fabian L, Mottey N, Corbett A, Forster J (2012) Young adults’ favorable perceptions of snus, dissolvable tobacco products, and electronic cigarettes: findings from a focus group study. Am J Public Health 102:2088–2093

    PubMed Central  PubMed  Google Scholar 

  • Clemens KJ, Caillé S, Stinus L, Cador M (2009) The addition of five minor tobacco alkaloids increases nicotine-induced hyperactivity, sensitization and intravenous self-administration in rats. Int J Neuropsychopharmacol 12:1355–1366

    CAS  PubMed  Google Scholar 

  • Cohen A, Koob GF, George O (2012) Robust escalation of nicotine intake with extended access to nicotine self-administration and intermittent periods of abstinence. Neuropsychopharmacology 37:2153–2160

    Google Scholar 

  • Cohen C, Perrault G, Griebel G, Soubrie P (2005) Nicotine-associated cues maintain nicotine-seeking behavior in rats several weeks after nicotine withdrawal: reversal by the cannabinoid (CB1) receptor antagonist, rimonabant (SR141716). Neuropsychopharmacology 30:145–155

    CAS  PubMed  Google Scholar 

  • Conklin CA, Tiffany S (2002a) Cue-exposure treatment: time for change. Addiction 97:1219–1221

    PubMed  Google Scholar 

  • Conklin CA, Tiffany ST (2002b) Applying extinction research and theory to cue-exposure addiction treatments. Addiction 97:155–167

    PubMed  Google Scholar 

  • Conklin CA, Perkins KA, Robin N, McClernon FG, Salkeld RP (2010) Bringing real world into the laboratory: person smoking and nonsmoking environments. Drug Alcohol Depend 111:58–63

    PubMed Central  PubMed  Google Scholar 

  • Correa M, Salamone JD, Segovia KN, Pardo M, Longoni R, Spina L, Peana AT, Vinci S, Acquas E (2012) Piecing together the puzzle of acetaldehyde as a neuroactive agent. Neurosci Biobehav Rev 36:404–430

    CAS  PubMed  Google Scholar 

  • Corrigall WA (1999) Nicotine self-administration in animals as a dependence model. Nicotine Tob Res 1:11–20

    CAS  PubMed  Google Scholar 

  • Corrigall WA, Coen KM (1989) Nicotine maintains robust self-administration in rats on a limited-access schedule. Psychopharmacology 99:473–478

    CAS  PubMed  Google Scholar 

  • Costello MR, Reynaga DD, Mojica CY, Zaveri NT, Belluzzi JD, Leslie FM (2014) Comparison of the reinforcing properties of nicotine and cigarette smoke extract in rats. Neuropsychopharmacol 39:1843–1851

    CAS  Google Scholar 

  • Crooks PA, Li M, Dwoskin LP (1997) Metabolites of nicotine in rat brain after peripheral nicotine administration cotinine, nornicotine, and norcotinine. Drug Metab Dispos 25:47–54

    CAS  PubMed  Google Scholar 

  • Dawkins LPJ, West R, Powell J, Pickering A (2007) A double-blind placebo-controlled experimental study of nicotine: II–Effects on response inhibition and executive functioning. Psychopharmacology 190:457–467

    CAS  PubMed  Google Scholar 

  • Deng XS, Deitrich RA (2008) Putative role of brain acetaldehyde in ethanol addiction. Current drug abuse reviews 1:3–8

    CAS  PubMed Central  PubMed  Google Scholar 

  • DeNoble VJ, Mele PC (1983) Behavioral pharmacology annual report. Philip Morris Tobacco Resolution. Bates no. 20605661. Available at http://www.pmdocs.com/getallimg.asp%3Fif%BCavpidx

  • Donny EC, Jones M (2009) Prolonged exposure to denicotinized cigarettes with or without transdermal nicotine. Drug Alcohol Depend 104:23–33

    CAS  PubMed Central  PubMed  Google Scholar 

  • Donny EC, Caggiula AR, Knopf S, Brown C (1995) Nicotine self-administration in rats. Psychopharmacology 122:390–394

    CAS  PubMed  Google Scholar 

  • Donny EC, Caggiula AR, Mielke MM, Jacobs KS, Rose C, Sved AF (1998) Acquisition of nicotine self-administration in rats: the effects of dose, feeding schedule, and drug contingency. Psychopharmacology 136:83–90

    CAS  PubMed  Google Scholar 

  • Donny EC, Caggiula AR, Mielke MM, Booth S, Gharib MA, Hoffman A, McCallum SE (1999) Nicotine self-administration in rats on a progressive ratio schedule of reinforcement. Psychopharmacology 147:135–142

    CAS  PubMed  Google Scholar 

  • Donny EC, Caggiula AR, Rowell PP, Gharib MA, Maldovan V, Booth S, McCallum S (2000) Nicotine self-administration in rats: estrous cycle effects, sex differences and nicotinic receptor binding. Psychopharmacology 151:392–405

    CAS  PubMed  Google Scholar 

  • Donny EC, Chaudhri N, Caggiula AR, Evans-Martin FF, Booth S, Gharib MA, Sved AF (2003) Operant responding for a visual reinforcer in rats is enhanced by noncontingent nicotine: implications for nicotine self-administration and reinforcement. Psychopharmacology 169:68–76

    CAS  PubMed  Google Scholar 

  • Donny EC, Houtsmuller E, Stitzer ML (2007) Smoking in the absence of nicotine: behavioral, subjective and physiological effects over 11 days. Addiction 102:324–334

    PubMed  Google Scholar 

  • Donny EC, Caggiula AR, Weaver MT, Levin ME, Sved AF (2011) The reinforcement-enhancing effects of nicotine: implications for the relationship between smoking, eating and weight. Physiol Behav 104:143–148

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duffy PH, Feuers R, Hart RW (1990) Effect of chronic caloric restriction on the circadian regulation of physiological and behavioral variables in old male B6C3F1 mice. Chronobiol Int 7:291–303

    CAS  PubMed  Google Scholar 

  • Farre M, Cami J (1991) Pharmacokinetic considerations in abuse liability evaluation. Br J Addict 86:1601–1606

    CAS  PubMed  Google Scholar 

  • Feltenstein MW, Ghee SM, See RE (2012) Nicotine self-administration and reinstatement of nicotine-seeking in male and female rats. Drug Alcohol Depend 121:240–246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Flagel SB, Watson SJ, Akil H, Robinson TE (2008) Individual differences in the attribution of incentive salience to a reward-related cue: influence on cocaine sensitization. Behav Brain Res 186:48–56

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fowler CD, Kenny PJ (2011) Intravenous nicotine self-administration and cue-induced reinstatement in mice: effects of nicotine dose, rate of drug infusion and prior instrumental training. Neuropharmacology 61:687–698

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fowler HARRY (1971) Implications of sensory reinforcement. The nature of reinforcement, Academic Press, New York, 151–195

    Google Scholar 

  • Fowler JS, Volkow ND, Wang G-J, Pappas N, Logan J, Shea C, Alexoff D, MacGregor RR, Schlyer DJ, Zezulkova I (1996a) Brain monoamine oxidase a inhibition in cigarette smokers. Proc Natl Acad Sci USA 93:14065–14069

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fowler J, Volkow N, Wang G-J, Pappas N, Logan J, MacGregor R, Alexoff D, Shea C, Schlyer D, Wolf A (1996b) Inhibition of monoamine oxidase B in the brains of smokers. Nature 379:733–736

    CAS  PubMed  Google Scholar 

  • Goldberg SR, Spealman RD, Risner ME, Henningfield JE (1983) Control of behavior by intravenous nicotine injections in laboratory animals. Pharmacol Biochem Behav 19:1011–1020

    CAS  PubMed  Google Scholar 

  • Grebenstein P, Burroughs D, Zhang Y, LeSage MG (2013) Sex differences in nicotine self-administration in rats during progressive unit dose reduction: implications for nicotine regulation policy. Pharmacol Biochem Behav 114–115:70–81

    PubMed  Google Scholar 

  • Guillem K, Vouillac C, Azar MR, Parsons LH, Koob GF, Cador M, Stinus L (2005) Monoamine oxidase inhibition dramatically increases the motivation to self-administer nicotine in rats. J Neurosci 25:8593–8600

    CAS  PubMed  Google Scholar 

  • Hall BJ, Wells C, Allenby C, Lin MY, Hao I, Marshall L, Levin ED (2014) Differential effects of non-nicotine tobacco constituent compounds on nicotine self-administration in rats. Pharmacol Biochem Behav 120:103–108

    CAS  PubMed  Google Scholar 

  • Harrison AA, Gasparini F, Marlou A (2002) Nicotine potentiation of brain stimulation reward reversed by DH beta E and SCH 23390, but not my eticlopride, LY 314582, or MPEP in rats. Psychopharmacology 160:56–66

    CAS  PubMed  Google Scholar 

  • Harrington GM (1963) Stimulus intensity stimulus satiation and optimum stimulation with light-contingent bar-press. Psychological Reports 13:107–111

    Google Scholar 

  • Harvey DM, Yasar S, Heishman SJ, Panlilio LV, Henningfield JE, Goldberg SR (2004) Nicotine serves as an effective reinforcer of intravenous drug-taking behavior in human cigarette smokers. Psychopharmacology 175:134–142

    CAS  PubMed  Google Scholar 

  • Henningfield JE, Goldberg SR (1983) Nicotine as a reinforcer in human subjects and laboratory animals. Pharmacol Biochem Behav 19:989–992

    CAS  PubMed  Google Scholar 

  • Hoffman AC, Evans SE (2013) Abuse potential of non-nicotine tobacco smoke components: acetaldehyde, nornicotine, cotinine, and anabasine. Nicotine Tob Res 15:622–632

    CAS  PubMed  Google Scholar 

  • Houlgate PR, Dhingra KS, Nash SJ, Evans WH (1989) Determination of formaldehyde and acetaldehyde in mainstream cigarette smoke by high-performance liquid chromatography. Analyst 114:355–360

    CAS  PubMed  Google Scholar 

  • Huang H-Y, Hsieh S-H (2007) Analyses of tobacco alkaloids by cation-selective exhaustive injection sweeping microemulsion electrokinetic chromatography. J Chromatogr A 1164:313–319

    CAS  PubMed  Google Scholar 

  • Jensvold MF, Hamilton JA, Halbreich U (1996) Future research directions: methodological considerations for advancing gender-sensitive pharmacology. American Psychiatric Association, Arlington, VA, USA, pp 415–430

    Google Scholar 

  • Johnson MW, Bickel WK, Kirshenbaum AP (2004) Substitutes for tobacco smoking: a behavioral economic analysis of nicotine gum, denicotinized cigarettes, and nicotine-containing cigarettes. Drug Alcohol Depend 74:253–264

    PubMed  Google Scholar 

  • Juliano LM, Donny EC, Houtsmuller EJ, Stitzer ML (2006) Experimental evidence for a causal relationship between smoking lapse and relapse. J Abnorm Psychol 115:166–173

    PubMed  Google Scholar 

  • Kenny PJ, Markou A (2006) Nicotine self-administration acutely activates brain reward systems and induces a long-lasting increase in reward sensitivity. Neuropsychopharmacology 31:1203–1211

    CAS  PubMed  Google Scholar 

  • Kim JYS, Fendrich M (2002) Gender differences in juvenile arrestees’ drug use, self-reported dependence, and perceived need for treatment. Psychiatric Services 53:70–75

    PubMed  Google Scholar 

  • Kota D, Martin BR, Robinson SE, Damaj MI (2007) Nicotine dependence and reward differ between adolescent and adult male mice. J Pharmacol Exp Ther 322:399–407

    CAS  PubMed  Google Scholar 

  • Kotz D, Brown J, West R (2014) ‘Real-world’ effectiveness of smoking cessation treatments: a population study. Addiction 109:491–499

    PubMed  Google Scholar 

  • Kyerematen G, Owens G, Chattopadhyay B, Vesell E (1988) Sexual dimorphism of nicotine metabolism and distribution in the rat. Studies in vivo and in vitro. Drug Metab Dispos 16:823–828

    CAS  PubMed  Google Scholar 

  • Lang WJ, Latiff AA, McQueen A, Singer G (1977) Self administration of nicotine with and without a food delivery schedule. Pharmcol Biochem Behav 7:65–70

    CAS  Google Scholar 

  • Lanza ST, Donny EC, Collins LM, Balster RL (2004) Analyzing the acquisition of drug self-administration using growth curve models. Drug Alcohol Depend 75:11–21

    PubMed  Google Scholar 

  • Lazev AB, Herzog TA, Brandon TH (1999) Classical conditions of environmental cues to cigarette smoking. Clinical Trial. Exp Clin Psychopharmacol 7:56–63

    CAS  PubMed  Google Scholar 

  • Le Foll B, Goldberg SR (2005) Control of the reinforcing effects of nicotine by associated environmental stimuli in animals and humans. Trends Pharmacol Sci 26:287–293

    PubMed  Google Scholar 

  • LeSage MG, Burroughs D, Dufek M, Keyler DE, Pentel PR (2004) Reinstatement of nicotine self-administration in rats by presentation of nicotine-paired stimuli, but not nicotine priming. Pharmacol Biochem Behav 79:507–513

    CAS  PubMed  Google Scholar 

  • Leslie FM, Mojica CY, Reynaga DD (2013) Nicotinic receptors in addiction pathways. Mol Pharmacol 83:753–758

    CAS  PubMed  Google Scholar 

  • Levin ED, Rezvani AH, Montoya D, Rose JE, Swartzwelder HS (2003) Adolescent-onset nicotine self-administration modeled in female rats. Psychopharmacology 169:141–149

    CAS  PubMed  Google Scholar 

  • Levin ED, Lawrence SS, Petro A, Horton K, Rezvani AH, Seidler FJ, Slotkin TA (2007) Adolescent vs. adult-onset nicotine self-administration in male rats: duration of effect and differential nicotinic receptor correlates. Neurotoxicol Teratol 29:458–465

    CAS  PubMed Central  PubMed  Google Scholar 

  • Levin ED, Slade S, Wells C, Cauley M, Petro A, Vendittelli A, Johnson M, Williams P, Horton K, Rezvani AH (2011) Threshold of adulthood for the onset of nicotine self-administration in male and female rats. Behav Brain Res 225:473–481

    CAS  PubMed Central  PubMed  Google Scholar 

  • Levin ME, Weaver MT, Palmatier MI, Caggiula AR, Sved AF, Donny EC (2012) Varenicline dose dependently enhances responding for nonpharmacological reinforcers and attenuates the reinforcement-enhancing effects of nicotine. Nicotine Tob Res 14:299–305

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li S, Zou S, Coen K, Funk D, Shram MJ, Le AD (2014) Sex differences in yohimbine-induced increases in the reinforcing efficacy of nicotine in adolescent rats. Addict Biol 19:156–164

    CAS  PubMed  Google Scholar 

  • Liu X, Caggiula AR, Yee SK, Nobuta H, Sved AF, Pechnick RN, Poland RE (2007) Mecamylamine attenuates cue-induced reinstatement of nicotine-seeking behavior in rats. Neuropsychopharmacology 32:710–718

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu X, Caggiula AR, Palmatier MI, Donny EC, Sved AF (2008) Cue-induced reinstatement of nicotine-seeking behavior in rats: effect of bupropion, persistence over repeated tests, and its dependence on training dose. Psychopharmacology 196:365–375

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu X, Jernigen C, Gharib M, Booth S, Caggiula AR, Sved AF (2010) Effects of dopamine antagonists on drug cue-induced reinstatement of nicotine-seeking behavior in rats. Behav Pharmacol 21:153–160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Loftipour Arnold SMM, Hogenkamp DJ, Gee KW, Belluzzi JD, Leslie FM (2011) The monoamine oxidase (MAO) inhibitor tranylcypromine enhances nicotine self-administration in rats through a mechanism independent of MAO inhibition. Neuropharm 61:95–104

    Google Scholar 

  • Lynch WJ (2006) Sex differences in vulnerability to drug self-administration. Exp Clin Psychopharmacol 14:34–41

    CAS  PubMed  Google Scholar 

  • Lynch WJ (2009) Sex and ovarian hormones influence vulnerability and motivation for nicotine during adolescence in rats. Pharmacol Biochem Behav 94:43–50

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lynch WJ, Roth ME, Carroll ME (2002) Biological basis of sex differences in drug abuse: preclinical and clinical studies. Psychopharmacology 164:121–137

    CAS  PubMed  Google Scholar 

  • Markou A, Paterson NE (2009) Multiple motivational forces contribute to nicotine dependence. In: Bevins RA, Caggiula AR (eds) Nebraska Symposium on Motivation: The motivational impact of nicotine and its role in tobacco use, vol 55. Springer Science + Business Media, New York, pp 65–89

    Google Scholar 

  • Matta SG, Balfour DJ, Benowitz NL, Boyd RT, Buccafusco JJ, Caggiula AR, Zirger JM (2007) Guidelines on nicotine dose selection for in vivo research. Psychopharmacology 190:269–319

    CAS  PubMed  Google Scholar 

  • McColl S, Sellers EM (2006) Research design strategies to evaluate the impact of formulations on abuse liability. Drug Alcohol Depend 83(Suppl. 1):S52–S62

    CAS  PubMed  Google Scholar 

  • McKee SA, Maciejewski PK, Falba T, Mazure CM (2003) Sex differences in the effects of stressful life events on changes in smoking status. Addiction 98:847–855

    PubMed  Google Scholar 

  • Melis M, Enrico P, Peana AT, Diana M (2007) Acetaldehyde mediates alcohol activation of the mesolimbic dopamine system. Eur J Neurosci 26:2824–2833

    CAS  PubMed  Google Scholar 

  • Mello NK, Fivel PA, Kohut SJ, Caine SB (2014) Anatabine significantly decreases nicotine self-administration. Exp Clin Psychopharmacol 22:1–8

    Google Scholar 

  • Meyer PJ, Ma ST, Robinson TE (2011) A cocaine cue is more preferred and evokes more frequency-modulated 50 kHz ultrasonic vocalizations in rats prone to attribute incentive salience to a food cue. Psychopharmacology 219:999–1009

    PubMed Central  PubMed  Google Scholar 

  • Myers WD, Ng KT, Singer G (1982) Intravenous self-administration of acetaldehyde in the rat as a function of schedule, food deprivation and photoperiod. Pharmacol Biochem Behav 17:807–811

    CAS  PubMed  Google Scholar 

  • Myers WD, Ng KT, Singer G (1984a) Effects of naloxone and buprenorphine on intravenous acetaldehyde self-injection in rats. Physiol Behav 33:449–455

    CAS  PubMed  Google Scholar 

  • Myers W, Ng K, Singer G (1984b) Ethanol preference in rats with a prior history of acetaldehyde self-administration. Cell Mol Life Sci 40:1008–1010

    CAS  Google Scholar 

  • Natividad LA, Torres OV, Friedman TC, O’Dell LE (2013) Adolescence is a period of development characterized by short-and long-term vulnerability to the rewarding effects of nicotine and reduced sensitivity to the anorectic effects of this drug. Behav Brain Res 257:275–285

    CAS  PubMed Central  PubMed  Google Scholar 

  • O’Dell LE, Torres OV (2014) A mechanistic hypothesis of the factors that enhance vulnerability to nicotine use in females. Neuropharmacology 76:566–580

    PubMed  Google Scholar 

  • O’Dell LE, Chen SA, Smith RT, Specio SE, Balster RL, Paterson NE, Koob GF (2007) Extended access to nicotine self-administration leads to dependence: Circadian measures, withdrawal measures, and extinction behavior in rats. J Pharmacol Exp Ther 320:180–193

    PubMed  Google Scholar 

  • O’Hara P, Portser SA, Anderson BP (1989) The influence of menstrual cycle changes on the tobacco withdrawal syndrome in women. Addict Behav 14:595–600

    PubMed  Google Scholar 

  • Palmatier MI, Evans-Martin FF, Hoffman A, Caggiula AR, Chaudhri N, Donny EC, Sved AF (2006) Dissociating the primary reinforcing and reinforcement-enhancing effects of nicotine using a rat self-administration paradigm with concurrently available drug and environmental reinforcers. Psychopharmacology 184:391–400

    CAS  PubMed  Google Scholar 

  • Palmatier MI, Liu X, Matteson GL, Donny EC, Caggiula AR, Sved AF (2007) Conditioned reinforcement in rats established with self-administered nicotine and enhanced by noncontingent nicotine. Psychopharmacology 195:235–243

    CAS  PubMed Central  PubMed  Google Scholar 

  • Palmatier MI, Liu X, Donny EC, Caggiula AR, Sved AF (2008) Metabotropic glutamate five receptor (mGluR5) antagonists decrease nicotine seeking, but do not affect the reinforcement enhancing effects of nicotine. Neuropsychopharmacology 33:2139–2147

    CAS  PubMed Central  PubMed  Google Scholar 

  • Palmatier MI, Levin ME, Mays KL, Donny EC, Caggiula AR, Sved AF (2009) Bupropion and nicotine enhance responding for nondrug reinforcers via dissociable pharmacological mechanisms in rats. Psychopharmacology 207:381–390

    CAS  PubMed Central  PubMed  Google Scholar 

  • Palmatier MI, O’Brien LC, Hall MJ (2012) The role of conditioning history and reinforcer strength in the reinforcement enhancing effects of nicotine in rats. Psychopharmacology 219:1119–1131

    CAS  Google Scholar 

  • Paterson NE, Markou A (2004) Prolonged nicotine dependence associated with extended access to nicotine self-administration in rats. Psychopharmacology 173:64–72

    CAS  PubMed  Google Scholar 

  • Pavlov IP (1927) Conditioned reflexes. An investigation of the physiological activity of the cerebral cortex. Oxford University Press, Oxford

    Google Scholar 

  • Peana AT, Enrico P, Assaretti AR, Pulighe E, Muggironi G, Nieddu M, Piga A, Lintas A, Diana M (2008) Key role of ethanol-derived acetaldehyde in the motivational properties induced by intragastric ethanol: a conditioned place preference study in the rat. Alcohol Clin Exp Res 32:249–258

    CAS  PubMed  Google Scholar 

  • Peana AT, Muggironi G, Diana M (2010) Acetaldehyde-reinforcing effects: a study on oral self-administration behavior. Frontiers in Psychiatry 1:23

    PubMed Central  PubMed  Google Scholar 

  • Peana AT, Muggironi G, Fois GR, Zinellu M, Vinci S, Acquas E (2011) Effect of opioid receptor blockade on acetaldehyde self-administration and ERK phosphorylation in the rat nucleus accumbens. Alcohol 45:773–783

    CAS  PubMed  Google Scholar 

  • Peartree NA, Sanabria F, Thiel KJ, Weber SM, Cheung TH, Neisewander JL (2012) A new criterion for acquisition of nicotine self-administration in rats. Drug Alcohol Depend 124:63–69

    CAS  PubMed Central  PubMed  Google Scholar 

  • Perkins KA (2009) Does smoking cue‐induced craving tell us anything important about nicotine dependence? Addiction 104:1610–1616

    Google Scholar 

  • Perkins KA (2009) Sex differences in nicotine reinforcement and reward: influences on the persistence of tobacco smoking. Nebr Symp Motiv 55:143–169

    PubMed  Google Scholar 

  • Perkins KA, Sexton JE, Reynolds WA, Grobe JE, Fonte C, Stiller RL (1994) Comparison of acute subjective and heart rate effects of nicotine intake via tobacco smoking versus nasal spray. Pharmacol Biochem Behav 47:295–299

    Google Scholar 

  • Perkins KA, Karelitz JL (2013a) Influence of reinforcer magnitude and nicotine amount on smoking’s acute reinforcement enhancing effects. Drug Alcohol Depend 133:167–171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Perkins KA, Karelitz JL (2013b) Reinforcement enhancing effects of nicotine via smoking. Psychopharmacology 228:479–486

    CAS  PubMed Central  PubMed  Google Scholar 

  • Perkins KA, Donny E, Caggiula AR (1999) Sex differences in nicotine effects and self-administration: review of human and animal evidence. Nicotine Tob Res 1:301–315

    CAS  PubMed  Google Scholar 

  • Perkins KA, Gerlach D, Vender J, Meeker J, Hutchison S, Grobe J (2001) Sex differences in the subjective and reinforcing effects of visual and olfactory cigarette smoke stimuli. Nicotine Tob Res 3:141–150

    CAS  PubMed  Google Scholar 

  • Perkins KA, Jacobs L, Sanders M, Caggiula AR (2002) Sex differences in the subjective and reinforcing effects of cigarette nicotine dose. Psychopharmacology 163:194–201

    CAS  PubMed  Google Scholar 

  • Perkins KA, Karelitz JL, Giedgowd GE, Conklin CA (2013) Negative mood effects on craving to smoke in women versus men. Addict Behav 38:1527–1531

    PubMed Central  PubMed  Google Scholar 

  • Picciotto MR, Caldarone BJ, Brunzell DH, Zachariou V, Stevens TR, King SL (2001) Neuronal nicotinic acetylcholine receptor subunit knockout mice: physiological and behavioral phenotypes and possible clinical implications. Pharmacol Ther 92:89–108

    CAS  PubMed  Google Scholar 

  • Quertemont E, De Witte P (2001) Conditioned stimulus preference after acetaldehyde but not ethanol injections. Pharmacol Biochem Behav 68:449–454

    CAS  PubMed  Google Scholar 

  • Rescorla RA, Solomon RL (1967) Two-process learning theory: relationships between Pavlovian conditioning and instrumental learning. Psychol Rev 74:151–182

    CAS  PubMed  Google Scholar 

  • Robbins TW, Koob GF (1978) Pipradrol enhances reinforcing properties of stimuli paired with brain stimulation. Pharmacol Biochem Behav 8:219–222

    CAS  PubMed  Google Scholar 

  • Robinson TE, Berridge KC (2000) The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction 95:S91–S117

    PubMed  Google Scholar 

  • Robinson TE, Yager LM, Cogan ES, Saunders BT (2014) On the motivational properties of reward cues: individual differences. Neuropharmacology 76:450–459

    CAS  PubMed  Google Scholar 

  • Rodd-Henricks ZA, Melendez RI, Zaffaroni A, Goldstein A, McBride WJ, Li T-K (2002) The reinforcing effects of acetaldehyde in the posterior ventral tegmental area of alcohol-preferring rats. Pharmacol Biochem Behav 72:55–64

    CAS  PubMed  Google Scholar 

  • Rose JE, Behm FM, Westman EC, Coleman RE (1999) Arterial nicotine kinetics during cigarette smoking and intravenous nicotine administration: implications for addiction. Drug Alcohol Depend 56:99–107

    CAS  PubMed  Google Scholar 

  • Rose JE, Behm FM, Westman EC, Johnson M (2000) Dissociating nicotine and nonnicotine components of cigarette smoking. Pharmacol Biochem Behav 67:71–81

    CAS  PubMed  Google Scholar 

  • Russell MAH, Feyerabend C (1978) Cigarette smoking: a dependence on high-nicotine boli. Drug Metab Rev 8:29–57

    CAS  PubMed  Google Scholar 

  • Russell JC, Epling WF, Pierce D, Amy RM, Boer DP (1987) Induction of voluntary prolonged running by rats. J Appl Physiol 63:2549–2553

    CAS  PubMed  Google Scholar 

  • Samaha A-N, Robinson TE (2005) Why does the rapid delivery of drugs to the brain promote addiction? Trends Pharmacol Sci 26:82–87

    CAS  PubMed  Google Scholar 

  • Saunders BT, Robinson TE (2011) Individual variation in the motivational properties of cocaine. Neuropsychopharmacology 36:1668–1676

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sayette MA, Tiffany ST (2013) Peak-provoked craving deserves a seat at the research table. Addiction 108:1030–1031

    PubMed  Google Scholar 

  • Schassburger RL, Rupprecht LE, Smith TT, Buffalari DM, Thiels E, Donny EC, Sved AF (2013) Nicotine enhances the rewarding properties of sucrose. Paper presented at the Society for Neuroscience, San Diego, California

    Google Scholar 

  • Schnoll RA, Patterson F, Lerman C (2007) Treating tobacco dependence in women. J Women’s Health 16:1211–1218

    Google Scholar 

  • Shram MJ, Funk D, Li Z, Lê AD (2008a) Nicotine self-administration, extinction responding and reinstatement in adolescent and adult male rats: evidence against a biological vulnerability to nicotine addiction during adolescence. Neuropsychopharmacology 33:739–748

    CAS  PubMed  Google Scholar 

  • Shram MJ, Li Z, Lê AD (2008b) Age differences in the spontaneous acquisition of nicotine self-administration in male Wistar and Long-Evans rats. Psychopharmacology 197:45–58

    CAS  PubMed  Google Scholar 

  • Siegel S (1988) Drug anticipation and the treatment of dependence. NIDA Res Monogr 84:1–24

    CAS  PubMed  Google Scholar 

  • Singer G, Simpson F, Lang WJ (1978) Schedule induced self injections of nicotine with recovered body weight. Pharmacol Biochem Behav 9:387–389

    CAS  PubMed  Google Scholar 

  • Skinner BF (1953) Science and Human Behavior. Macmillan, New York

    Google Scholar 

  • Smith B, Amit Z, Splawinsky J (1984) Conditioned place preference induced by intraventricular infusions of acetaldehyde. Alcohol 1:193–195

    CAS  PubMed  Google Scholar 

  • Smith TT, Levin ME, Schassburger RL, Buffalari DM, Sved AF, Donny EC (2013) Gradual and immediate nicotine reduction result in similar low-dose nicotine self-administration. Nicotine Tob Res 15:1918–1925

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith TT, Schassburgher RL, Rupprecht LE, Buffalari DM, Sved AF, Donny EC (2014a) Effects of tranylcypromine, an irreversible monoamine oxidase (MAO) inhibitor, on nicotine self-administration in rats. Paper presentation at the annual meeting of the association for behavior analysis international, Chicago, Illinois

    Google Scholar 

  • Smith TT, Schassburger RL, Buffalari DM, Sved AF, Donny EC (2014b) Low dose nicotine self-administration is reduced in adult male rats naïve to high doses of nicotine: implications for nicotine product standards. Exp Clin Psychopharmacol. http://dx.doi.org/10.1037/a0037396

  • Sofuoglu M, Yoo S, Hill KP, Mooney M (2008) Self-administration of intravenous nicotine in male and female cigarette smokers. Neuropsychopharmacology 33:715–720

    CAS  PubMed  Google Scholar 

  • Sorge RE, Clarke PB (2009) Rats self-administer intravenous nicotine delivered in a novel smoking-relevant procedure: effects of dopamine antagonists. J Pharmacol Exp Ther 330:633–640

    CAS  PubMed  Google Scholar 

  • Sorge RE, Pierre VJ, Clarke PB (2009) Facilitation of intravenous nicotine self-administration in rats by a motivationally neutral sensory stimulus. Psychopharmacology 207:191–200

    CAS  PubMed  Google Scholar 

  • Speakman JR, Mitchel SE (2011) Caloric Restriction. Mol Aspects Med 32:159–221

    CAS  PubMed  Google Scholar 

  • Spear LP (2000) The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24:417–463

    CAS  PubMed  Google Scholar 

  • Spina L, Longoni R, Vinci S, Ibba F, Peana AT, Muggironi G, Spiga S, Acquas E (2010) Role of dopamine D1 receptors and extracellular signal regulated kinase in the motivational properties of acetaldehyde as assessed by place preference conditioning. Alcohol Clin Exp Res 34:607–616

    CAS  PubMed  Google Scholar 

  • Stolerman IP (1989) Discriminative stimulus effects of nicotine in rats trained under different schedules of reinforcement. Psychopharmacology 97:131–138

    Google Scholar 

  • Stolerman IP (1999) Inter-species consistency in the behavioural pharmacology of nicotine dependence. Behav Pharmacol 10:559–580

    CAS  PubMed  Google Scholar 

  • Stolerman IP, Jarvis M (1995) The scientific case that nicotine is addictive. Psychopharmacology 117:2–10

    CAS  PubMed  Google Scholar 

  • Takayama S, Uyeno E (1985) Intravenous self-administration of ethanol and acetaldehyde by rats. Japan J Psychopharmacol 5:329–334

    CAS  Google Scholar 

  • Tiffany ST (1990) A cognitive model of drug urges and drug-use behavior: role of automatic and nonautomatic processes. Psychol Rev 97:147–168

    CAS  PubMed  Google Scholar 

  • Torres OV, Tejeda HA, Natividad LA, O’Dell LE (2008) Enhanced vulnerability to the rewarding effects of nicotine during the adolescent period of development. Pharmacol Biochem Behav 90:658–663

    CAS  PubMed Central  PubMed  Google Scholar 

  • USDHHS (1988) Office of the Surgeon General DHHS Publication no. (CDC): 88-8406.0. The health consequences of smoking: nicotine addiction: a report of the surgeon general. Center for Health Promotion and Education. Office on Smoking and Health United States. Public Health Service

    Google Scholar 

  • USDHHS (2012) Preventing tobacco use among youth and young adults: a report of the Surgeon General. US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, Atlanta, GA, 3

    Google Scholar 

  • Vastola BJ, Douglas LA, Varlinskaya EI, Spear LP (2002) Nicotine-induced conditioned place preference in adolescent and adult rats. Physiol Behav 77:107–114

    CAS  PubMed  Google Scholar 

  • Villegier AS, Lotfipour S, Belluzzi JD, Leslie FM (2007a) Involvement of alpha1-adrenergic receptors in tranylcypromine enhancement of nicotine self-administration in rat. Psychopharmacology 193:457–465

    CAS  PubMed  Google Scholar 

  • Villegier AS, Lotfipour S, McQuown SC, Belluzzi JD, Leslie FM (2007b) Tranylcypromine enhancement of nicotine self-administration. Neuropharmacology 52:1415–1425

    CAS  PubMed  Google Scholar 

  • Wakasa Y, Takada K, Yanagita T (1995) Reinforcing effect as a function of infusion speed in intravenous self-administration of nicotine in rhesus monkeys. Japan J Psychopharmacol 15:53–59

    CAS  Google Scholar 

  • Wertz JM, Sayette MA (2001) A review of the effects of perceived drug use opportunity of self-reported urge. Exp Clin Psychopharmacol 9:3–13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wing VC, Shoaib M (2008) Contextual stimuli modulate extinction and reinstatement in rodents self-administering intravenous nicotine. Psychopharmacology 200:357–365

    CAS  PubMed  Google Scholar 

  • Wing VC, Shoaib M (2013) Effect of infusion rate on intravenous nicotine self-administration in rats. Behav Pharmacol 24:517–522

    CAS  PubMed  Google Scholar 

  • Wray JM, Godleski SA, Tiffany ST (2011) Cue-reactivity in the natural environment of cigarette smokers: the impact of photographic and in vivo smoking stimuli. Psychol Addict Behav 25:733–737

    PubMed Central  PubMed  Google Scholar 

  • Xie J, Yin J, Sun S, Xie F, Zhang X, Guo Y (2009) Extraction and derivatization in single drop coupled to MALDI-FTICR-MS for selective determination of small molecule aldehydes in single puff smoke. Anal Chim Acta 638:198–201

    CAS  PubMed  Google Scholar 

  • Xu J, Azizian A, Monterosso J, Domier CP, Brody AL, London ED, Fong TW (2008) Gender effects on mood and cigarette craving during early abstinence and resumption of smoking. Nicotine Tob Res 10:1653–1661

    PubMed Central  PubMed  Google Scholar 

  • Yager LM, Robinson TE (2010) Cue-induced reinstatement of food seeking in rats that differ in their propensity to attribute incentive salience to food cues. Behav Brain Res 214:30–34

    PubMed Central  PubMed  Google Scholar 

  • Yan Y, Pushparaj A, Gamaleddin I, Steiner RC, Picciotto MR, Roder J, Le Foll B (2012) Nicotine-taking and nicotine-seeking in C57Bl/6 J mice without prior operant training or food restriction. Behav Brain Res 230:34–39

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zou S, Funk D, Shram MJ, Le AD (2014) Effects of stressors on the reinforcing efficacy of nicotine in adolescent and adult rats. Psychopharmacology 231:1601–1614

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by the National Institute on Drug Abuse (R01 DA010464) and FDA Center for Tobacco Products (CTP) (U54 DA031659). The funding source had no other role other than financial support. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH or the Food and Drug Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric C. Donny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rupprecht, L.E., Smith, T.T., Schassburger, R.L., Buffalari, D.M., Sved, A.F., Donny, E.C. (2015). Behavioral Mechanisms Underlying Nicotine Reinforcement. In: Balfour, D., Munafò, M. (eds) The Neuropharmacology of Nicotine Dependence. Current Topics in Behavioral Neurosciences, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-13482-6_2

Download citation

Publish with us

Policies and ethics