Skip to main content
Log in

Evidence for the involvement of NMDA receptors in the antidepressant-like effect of nicotine in mouse forced swimming and tail suspension tests

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The antidepressant action of acute nicotine administration in clinical and animal studies is well recognized. But the underlying mechanism for this effect has not been carefully discovered.

Objectives

We attempted to evaluate the possible role of N-Methyl-d-aspartate (NMDA) receptors in the antidepressant-like effect of nicotine.

Methods

After the assessment of locomotor activity in the open-field test, forced swimming test (FST) and tail suspension test (TST) were used to evaluate the antidepressant-like effect of nicotine in mice. We performed intraperitoneal administration of nicotine at different doses and periods before the tests. To assess the possible involvement of NMDA receptors, non-effective doses of NMDA antagonists and an NMDA agonist were obtained and were administered simultaneously with the non-effective and effective doses of nicotine, respectively.

Results

Nicotine (0.2 mg/kg, 30 min before FST/TST) significantly reduced the immobility time of mice similar to fluoxetine (20 mg/kg). Nicotine did not affect the locomotor behavior of mice in open-field test. Co-administration of non-effective doses of NMDA receptor antagonists, ketamine (1 or 0.3 mg/kg), MK-801 (0.05 or 0.005 mg/kg), and magnesium sulfate (10 or 5 mg/kg) with nicotine (0.1 or 0.03 mg/kg) had remarkable synergistic antidepressant effect in both FST and TST. Also, non-effective NMDA (75 or 30 mg/kg) reversed the anti-immobility effect of nicotine (0.2 mg/kg) on mouse FST and TST.

Conclusions

Our study has for the first time confirmed that the antidepressant-like effect of nicotine on mice is NMDA-mediated, and nicotine presumably exerts this effect by antagonizing the glutamatergic NMDA receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aceto MD, Awaya H, Martin BR, May EL (1983) Antinociceptive action of nicotine and its methiodide derivatives in mice and rats. Br J Pharmacol 79:869–876

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aizenman E, Tang L-H, Reynolds IJ (1991) Effects of nicotinic agonists on the NMDA receptor. Brain Res 551:355–357

    Article  CAS  PubMed  Google Scholar 

  • Andreasen JT, Redrobe JP (2009) Antidepressant-like effects of nicotine and mecamylamine in the mouse forced swim and tail suspension tests: role of strain, test and sex. Behav Pharmacol 20:286–295

    Article  CAS  PubMed  Google Scholar 

  • Andreasen J, Olsen G, Wiborg O, Redrobe J (2009) Antidepressant-like effects of nicotinic acetylcholine receptor antagonists, but not agonists, in the mouse forced swim and mouse tail suspension tests. J Psychopharmacol 23:797–804

    Article  CAS  PubMed  Google Scholar 

  • Aramakis VB, Metherate R (1998) Nicotine selectively enhances NMDA receptor-mediated synaptic transmission during postnatal development in sensory neocortex. J Neurosci 18:8485–8495

    CAS  PubMed  Google Scholar 

  • Arroll B, Macgillivray S, Ogston S, Reid I, Sullivan F, Williams B, Crombie I (2005) Efficacy and tolerability of tricyclic antidepressants and SSRIs compared with placebo for treatment of depression in primary care: a meta-analysis. Ann Fam Med 3:449–456

    Article  PubMed Central  PubMed  Google Scholar 

  • Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng P-f, Kavalali ET, Monteggia LM (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475:91–95

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354

    Article  CAS  PubMed  Google Scholar 

  • Berrendero F, Plaza-Zabala A, Galeote L, Flores Á, Bura SA, Kieffer BL, Maldonado R (2012) Influence of δ-opioid receptors in the behavioral effects of nicotine. Neuropsychopharmacology 37:2332–2344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bourin M, Chenu F, Ripoll N, David DJP (2005) A proposal of decision tree to screen putative antidepressants using forced swim and tail suspension tests. Behav Brain Res 164:266–269

    Article  CAS  PubMed  Google Scholar 

  • Castagné V, Moser P, Roux S, Porsolt RD (2011) Rodent models of depression: forced swim and tail suspension behavioral despair tests in rats and mice. Curr Protoc Neurosci 55:11–18.10

    Google Scholar 

  • Cryan JF, Markou A, Lucki I (2002) Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 23:238–245

    Article  CAS  PubMed  Google Scholar 

  • Cryan JF, Mombereau C, Vassout A (2005) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29:571–625

    Article  CAS  PubMed  Google Scholar 

  • Cunha MP, Pazini FL, Ludka FK, Rosa JM, Oliveira Á, Budni J, Ramos-Hryb AB, Lieberknecht V, Bettio LEB, Martín-de-Saavedra MD (2015) The modulation of NMDA receptors and l-arginine/nitric oxide pathway is implicated in the anti-immobility effect of creatine in the tail suspension test. Amino acids: 1-17

  • Damaj M, Glassco W, Dukat M, Martin B (1999) Pharmacological characterization of nicotine-induced seizures in mice. J Pharmacol Exp Ther 291:1284–1291

    CAS  PubMed  Google Scholar 

  • Djurić VJ, Dunn E, Overstreet DH, Dragomir A, Steiner M (1999) Antidepressant effect of ingested nicotine in female rats of Flinders resistant and sensitive lines. Physiol Behav 67:533–537

    Article  PubMed  Google Scholar 

  • Ferguson SM, Brodkin JD, Lloyd GK, Menzaghi F (2000) Antidepressant-like effects of the subtype-selective nicotinic acetylcholine receptor agonist, SIB-1508Y, in the learned helplessness rat model of depression. Psychopharmacology 152:295–303

    Article  CAS  PubMed  Google Scholar 

  • Fromm L, Heath DL, Vink R, Nimmo AJ (2004) Magnesium attenuates post-traumatic depression/anxiety following diffuse traumatic brain injury in rats. J Am Coll Nutr 23:529S–533S

    Article  CAS  PubMed  Google Scholar 

  • Ghasemi M, Raza M, Dehpour A (2009) NMDA receptor antagonists augment antidepressant-like effects of lithium in the mouse forced swimming test. J Psychopharmacol

  • Ghasemi M, Raza M, Dehpour A (2010) NMDA receptor antagonists augment antidepressant-like effects of lithium in the mouse forced swimming test. J Psychopharmacol 24:585–594

    Article  CAS  PubMed  Google Scholar 

  • Glassman AH (1993) Cigarette smoking: implications for psychiatric illness. Am J Psychiatry

  • Glassman AH, Covey LS, Stetner F, Rivelli S (2001) Smoking cessation and the course of major depression: a follow-up study. Lancet 357:1929–1932

    Article  CAS  PubMed  Google Scholar 

  • Gómez M, Martínez-Mota L, Estrada-Camarena E, Fernández-Guasti A (2014) Influence of the brain sexual differentiation process on despair and antidepressant-like effect of fluoxetine in the rat forced swim test. Neuroscience 261:11–22

    Article  PubMed  Google Scholar 

  • Haj-Mirzaian A, Hamzeh N, Javadi-Paydar M, Abdollahzadeh Estakhri MR, Dehpour AR (2013) Resistance to depression through interference of opioid and nitrergic systems in bile-duct ligated mice. Eur J Pharmacol 708:38–43

    Article  CAS  PubMed  Google Scholar 

  • Haj-Mirzaian A, Ostadhadi S, Kordjazy N, Dehpour AR, Mehr SE (2014) Opioid/NMDA receptors blockade reverses the depressant-like behavior of foot shock stress in the mouse forced swimming test. Eur J Pharmacol

  • Haj-Mirzaian A, Amiri S, Kordjazy N, Rahimi-Balaei M, Haj-Mirzaian A, Marzban H, Dehpour AR, Mehr SE (2015) Blockade of NMDA receptors reverses the depressant, but not anxiogenic effect of adolescence social isolation in mice. Eur J Pharmacol

  • Hasanein P, Parviz M, Keshavarz M, Javanmardi K, Allahtavakoli M, Ghaseminejad M (2007) Modulation of cholestasis-induced antinociception in rats by two NMDA receptor antagonists: MK-801 and magnesium sulfate. Eur J Pharmacol 554:123–127

    Article  CAS  PubMed  Google Scholar 

  • Hayase T (2011) Differential effects of TRPV1 receptor ligands against nicotine-induced depression-like behaviors. BMC Pharmacol 11:6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iniguez SD, Warren BL, Parise EM, Alcantara LF, Schuh B, Maffeo ML, Manojlovic Z, Bolanos-Guzmán CA (2009) Nicotine exposure during adolescence induces a depression-like state in adulthood. Neuropsychopharmacology 34:1609–1624

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jha P (2009) Avoidable global cancer deaths and total deaths from smoking. Nat Rev Cancer 9:655–664

    Article  CAS  PubMed  Google Scholar 

  • Ji S, Mataki C, Yamada S, Nankai M, Toru M (1998) Antidepressantlike effects of chronic nicotine on learned helplessness paradigm in rats. Biol Psychiatry 43:389–391

    Article  Google Scholar 

  • Kaymak C, Yilmaz E, Basar H, Ozcakir S, Apan A, Batislam E (2007) Use of the NMDA antagonist magnesium sulfate during monitored anesthesia care for shockwave lithotripsy. J Endourol 21:145–150

    Article  PubMed  Google Scholar 

  • Levin ED, Simon BB (1998) Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology 138:217–230

    Article  CAS  PubMed  Google Scholar 

  • Maj J, Rogóż Z, Skuza G, Sowińska H (1992) Effects of MK-801 and antidepressant drugs in the forced swimming test in rats. Eur Neuropsychopharmacol 2:37–41

    Article  CAS  PubMed  Google Scholar 

  • Manji HK, Drevets WC, Charney DS (2001) The cellular neurobiology of depression. Nat Med 7

  • Mannucci C, Tedesco M, Bellomo M, Caputi AP, Calapai G (2006) Long-term effects of nicotine on the forced swimming test in mice: an experimental model for the study of depression caused by smoke. Neurochem Int 49:481–486

    Article  CAS  PubMed  Google Scholar 

  • Mantovani M, Pértile R, Calixto JB, Santos AR, Rodrigues ALS (2003a) Melatonin exerts an antidepressant-like effect in the tail suspension test in mice: evidence for involvement of < i > N</i > -methyl-d-aspartate receptors and the l-arginine-nitric oxide pathway. Neurosci Lett 343:1–4

    Article  CAS  PubMed  Google Scholar 

  • Mantovani M, Pértile R, Calixto JB, Santos ARS, Rodrigues ALS (2003b) Melatonin exerts an antidepressant-like effect in the tail suspension test in mice: evidence for involvement of N-methyl-D-aspartate receptors and the L-arginine-nitric oxide pathway. Neurosci Lett 343:1–4

    Article  CAS  PubMed  Google Scholar 

  • Mathalon DH, Ahn K-H, Perry Jr EB, Cho H-S, Roach BJ, Blais RK, Bhakta S, Ranganathan M, Ford JM, D’Souza DC (2014) Effects of nicotine on the neurophysiological and behavioral effects of ketamine in humans. Front Psychiatry 5

  • Mattila M, Ahtee L, Saarnivaara L (1968) The analgesic and sedative effects of nicotine in white mice, rabbits and golden hamsters Ann Med Exp Biol Fenn: 78

  • McClernon FJ, Hiott FB, Westman EC, Rose JE, Levin ED (2006) Transdermal nicotine attenuates depression symptoms in nonsmokers: a double-blind, placebo-controlled trial. Psychopharmacology 189:125–133

    Article  CAS  PubMed  Google Scholar 

  • Mineur YS, Picciotto MR (2010) Nicotine receptors and depression: revisiting and revising the cholinergic hypothesis. Trends Pharmacol Sci 31:580–586

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • O’Leary OF, Bechtholt AJ, Crowley JJ, Hill TE, Page ME, Lucki I (2007) Depletion of serotonin and catecholamines block the acute behavioral response to different classes of antidepressant drugs in the mouse tail suspension test. Psychopharmacology 192:357–371

    Article  PubMed  Google Scholar 

  • O'dell T, Christensen B (1988) Mecamylamine is a selective non-competitive antagonist of N-methyl-D-aspartate-and aspartate-induced currents in horizontal cells dissociated from the catfish retina. Neurosci Lett 94:93–98

    Article  PubMed  Google Scholar 

  • Owolabi RA, Akanmu MA, Adeyemi OI (2014) Effects of ketamine and < i > N</i > -methyl-d-aspartate on fluoxetine-induced antidepressant-related behavior using the forced swimming test. Neurosci Lett 566:172–176

    Article  CAS  PubMed  Google Scholar 

  • Pałucha-Poniewiera A, Pilc A (2012) Involvement of mGlu5 and NMDA receptors in the antidepressant-like effect of acamprosate in the tail suspension test. Prog Neuro-Psychopharmacol Biol Psychiatry 39:102–106

    Article  Google Scholar 

  • Perrault GH, Morel E, Zivkovic B, Sanger DJ (1992) Activity of litoxetine and other serotonin uptake inhibitors in the tail suspension test in mice. Pharmacol Biochem Behav 42:45–47

    Article  CAS  PubMed  Google Scholar 

  • Picciotto MR, Brunzell DH, Caldarone BJ (2002) Effect of nicotine and nicotinic receptors on anxiety and depression. Neuroreport 13:1097–1106

    Article  CAS  PubMed  Google Scholar 

  • Poleszak E, Wlaz P, Kêdzierska E, Radziwon-Zaleska M, Pilc A, Fidecka S, Nowak G (2005a) Effects of acute and chronic treatment with magnesium in the forced swim test in rats. Pharmacol Rep 57:654–658

    CAS  PubMed  Google Scholar 

  • Poleszak E, Wlaź P, Szewczyk B, Kędzierska E, Wyska E, Librowski T, Szymura-Oleksiak J, Fidecka S, Pilc A, Nowak G (2005b) Enhancement of antidepressant-like activity by joint administration of imipramine and magnesium in the forced swim test: behavioral and pharmacokinetic studies in mice. Pharmacol Biochem Behav 81:524–529

    Article  CAS  PubMed  Google Scholar 

  • Poleszak E, Wlaz P, Kêdzierska E, Nieoczym D, Wyska E, Szymura-Oleksiak J, Fidecka S, Radziwon-Zaleska M, Nowak G (2006) Immobility stress induces depression-like behavior in the forced swim test in mice: effect of magnesium and imipramine. Pharmacol Rep 58:746

    CAS  PubMed  Google Scholar 

  • Poleszak E, Wlaź P, Kędzierska E, Nieoczym D, Wróbel A, Fidecka S, Pilc A, Nowak G (2007) NMDA/glutamate mechanism of antidepressant-like action of magnesium in forced swim test in mice. Pharmacol Biochem Behav 88:158–164

    Article  CAS  PubMed  Google Scholar 

  • Popik P, Kozela E, Krawczyk M (2003) Nicotine and nicotinic receptor antagonists potentiate the antidepressant‐like effects of imipramine and citalopram. Br J Pharmacol 139:1196–1202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Porsolt R, Bertin A, Jalfre M (1977a) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327

    CAS  PubMed  Google Scholar 

  • Porsolt RD, Le Pichon M, Jalfre M (1977b) Depression: a new animal model sensitive to antidepressant treatments. Nature 266:730–732

    Article  CAS  PubMed  Google Scholar 

  • Ramoa A, Alkondon M, Aracava Y, Irons J, Lunt G, Deshpande S, Wonnacott S, Aronstam R, Albuquerque E (1990) The anticonvulsant MK-801 interacts with peripheral and central nicotinic acetylcholine receptor ion channels. J Pharmacol Exp Ther 254:71–82

    CAS  PubMed  Google Scholar 

  • Roni MA, Rahman S (2014) The effects of lobeline on nicotine withdrawal-induced depression-like behavior in mice. Psychopharmacology: 1-10

  • Sadaghiani MS, Javadi-Paydar M, Gharedaghi MH, Fard YY, Dehpour AR (2011) Antidepressant-like effect of pioglitazone in the forced swimming test in mice: the role of PPAR-gamma receptor and nitric oxide pathway. Behav Brain Res 224:336–343

    Article  CAS  PubMed  Google Scholar 

  • SalÃn-Pascual RJ, Rosas M, Jimenez-Genchi A, Rivera-Meza BL (1996) Antidepressant effect of transdermal nicotine patches in nonsmoking patients with major depression. J Clin Psychiatry

  • Salehi-Sadaghiani M, Javadi-Paydar M, Gharedaghi MH, Zandieh A, Heydarpour P, Yousefzadeh-fard Y, Dehpour AR (2012) NMDA receptor involvement in antidepressant-like effect of pioglitazone in the forced swimming test in mice. Psychopharmacology 223:345–355

    Article  CAS  PubMed  Google Scholar 

  • Salín-Pascual RJ (2002) Nicotine antidepressant effects as a predictor of response to desimipramine or fluoxetine in non-smoking major depressed patients. Salud Mental 25:16–20

    Google Scholar 

  • Salín-Pascual RJ, Drucker-Colín R (1998) A novel effect of nicotine on mood and sleep in major depression. Neuroreport 9:57–60

    Article  PubMed  Google Scholar 

  • Santos T, Baungratz MM, Haskel SP, de Lima DD, da Cruz JN, Magro D, da Cruz J (2011) Behavioral interactions of simvastatin and fluoxetine in tests of anxiety and depression. Neuropsychiatr Dis Treat 8:413–422

    Google Scholar 

  • Schnoll RA, Leone FT, Hitsman B (2013) Symptoms of depression and smoking behaviors following treatment with transdermal nicotine patch. J Addict Dis 32:46–52

    Article  PubMed Central  PubMed  Google Scholar 

  • Shim I, Kim H-T, Kim Y-H, Chun B-G, Hahm D-H, Lee EH, Kim SE, Lee H-J (2002) Role of nitric oxide synthase inhibitors and NMDA receptor antagonist in nicotine-induced behavioral sensitization in the rat. Eur J Pharmacol 443:119–124

    Article  CAS  PubMed  Google Scholar 

  • Skolnick P, Popik P, Trullas R (2009) Glutamate-based antidepressants: 20 years on. Trends Pharmacol Sci 30:563–569

    Article  CAS  PubMed  Google Scholar 

  • Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85:367–370

    Article  CAS  PubMed  Google Scholar 

  • Suemaru K, Yasuda K, Cui R, Li B, Umeda K, Amano M, Mitsuhashi H, Takeuchi N, Inoue T, Gomita Y (2006) Antidepressant-like action of nicotine in forced swimming test and brain serotonin in mice. Physiol Behav 88:545–549

    Article  CAS  PubMed  Google Scholar 

  • Szasz BK, Mike A, Karoly R, Gerevich Z, Illes P, Vizi ES, Kiss JP (2007) Direct inhibitory effect of fluoxetine on N-methyl-D-aspartate receptors in the central nervous system. Biol Psychiatry 62:1303–1309

    Article  CAS  PubMed  Google Scholar 

  • Tizabi Y, Overstreet DH, Rezvani AH, Louis VA, Clark E Jr, Janowsky DS, Kling MA (1999) Antidepressant effects of nicotine in an animal model of depression. Psychopharmacology 142:193–199

    Article  CAS  PubMed  Google Scholar 

  • Tokita K, Yamaji T, Hashimoto K (2012) Roles of glutamate signaling in preclinical and/or mechanistic models of depression. Pharmacol Biochem Behav 100:688–704

    Article  CAS  PubMed  Google Scholar 

  • Trullas R, Skolnick P (1990) Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur J Pharmacol 185:1–10

    Article  CAS  PubMed  Google Scholar 

  • Umathe SN, Manna SS, Jain NS (2011) Involvement of endocannabinoids in antidepressant and anti-compulsive effect of fluoxetine in mice. Behav Brain Res 223:125–134

    Article  CAS  PubMed  Google Scholar 

  • Vazquez-Palacios G, Bonilla-Jaime H, Velazquez-Moctezuma J (2004) Antidepressant-like effects of the acute and chronic administration of nicotine in the rat forced swimming test and its interaction with flouxetine. Pharmacol Biochem Behav 78:165–169

    Article  CAS  PubMed  Google Scholar 

  • Vázquez-Palacios G, Bonilla-Jaime H, Velázquez-Moctezuma J (2005) Antidepressant effects of nicotine and fluoxetine in an animal model of depression induced by neonatal treatment with clomipramine. Prog Neuro-Psychopharmacol Biol Psychiatry 29:39–46

    Article  Google Scholar 

  • Vieyra-Reyes P, Mineur YS, Picciotto MR, Túnez I, Vidaltamayo R, Drucker-Colín R (2008) Antidepressant-like effects of nicotine and transcranial magnetic stimulation in the olfactory bulbectomy rat model of depression. Brain Res Bull 77:13–18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wolak M, Siwek A, Szewczyk B, Poleszak E, Bystrowska B, Moniczewski A, Rutkowska A, Młyniec K, Nowak G (2014) Evaluation of the role of NMDA receptor function in antidepressant-like activity. A new study with citalopram and fluoxetine in the forced swim test in mice. Pharmacol Rep

  • X-t G, Shao F, Xie X, Chen L, Wang W (2014) Effects of aspirin on immobile behavior and endocrine and immune changes in the forced swimming test: comparison to fluoxetine and imipramine. Pharmacol Biochem Behav 124:361–366

    Article  Google Scholar 

  • Yildiz F, Erden BF, Ulak G, Utkan T, Gacar N (2000) Antidepressant-like effect of 7-nitroindazole in the forced swimming test in rats. Psychopharmacology 149:41–44

    Article  CAS  PubMed  Google Scholar 

  • Zarrindast M-R, Sadegh M, Shafaghi B (1996) Effects of nicotine on memory retrieval in mice. Eur J Pharmacol 295:1–6

    Article  CAS  PubMed  Google Scholar 

  • Zarrindast MR, Aghamohammadi-Sereshki A, Rezayof A, Rostami P (2012) Nicotine-induced anxiogenic-like behaviours of rats in the elevated plus-maze: possible role of NMDA receptors of the central amygdala. J Psychopharmacol 26:555–563

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by research operating grants from the Experimental Medicine Research Center, Tehran University of Medical Sciences.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AhmadReza Dehpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haj-Mirzaian, A., Kordjazy, N., Haj-Mirzaian, A. et al. Evidence for the involvement of NMDA receptors in the antidepressant-like effect of nicotine in mouse forced swimming and tail suspension tests. Psychopharmacology 232, 3551–3561 (2015). https://doi.org/10.1007/s00213-015-4004-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-4004-0

Keywords

Navigation