Skip to main content
Log in

NMDA receptor involvement in antidepressant-like effect of pioglitazone in the forced swimming test in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Previously, we showed that pioglitazone exerts its antidepressant-like effect through peroxisome proliferator-activated receptor gamma receptors and demonstrated the possible involvement of calcium-dependent nitric oxide synthase inhibitors. Based upon the in vitro results, pioglitazone reduces N-methyl-d-aspartate (NMDA)-mediated calcium currents in hippocampal neurons.

Objective

In this study, we evaluated the involvement of the NMDA receptor (NMDAR) on the antidepressant-like effect of pioglitazone in the forced swimming test (FST) in mice.

Method

After the assessment of locomotor activity in the open-field test, mice were forced to swim individually and the immobility time of the last 4 min was evaluated. Pioglitazone was administered orally with doses of 5, 10, and 20 mg/kg 4 h before FST. To assess the involvement of NMDARs in the possible antidepressant-like effect of pioglitazone, a selective glutamate receptor agonist, NMDA (75 mg/kg, intraperitoneally [i.p.] or 20 ng/mouse, intracerebroventricularly [i.c.v.]), was administered before pioglitazone (20 mg/kg). To further determine a possible role of NMDARs in this effect, a noncompetitive antagonist of the NMDA, MK-801 (0.05 mg/kg, i.p. or 100 ng/mouse, i.c.v.), was coadministered with pioglitazone (10 mg/kg) 4 h prior to FST.

Results

Pioglitazone (20 mg/kg) administered 4 h prior to FST significantly reduced the immobility time. Coadministration of the noneffective doses of pioglitazone and MK-801 revealed an antidepressant-like effect in FST. Moreover, NMDA significantly reversed the antidepressant-like effect of pioglitazone administered 4 h prior to FST.

Conclusion

The antidepressant-like effect of pioglitazone in the FST is mediated partly through NMDAR signaling. This study provides a new approach for the treatment of depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aihara M, Ida I, Yuuki N, Oshima A, Kumano H, Takahashi K, Fukuda M, Oriuchi N, Endo K, Matsuda H (2007) HPA axis dysfunction in unmedicated major depressive disorder and its normalization by pharmacotherapy correlates with alteration of neural activity in prefrontal cortex and limbic/paralimbic regions. Psychiatry Res Neuroimaging 155:245–256

    Article  CAS  Google Scholar 

  • Allahtavakoli M, Shabanzadeh A, Roohbakhsh A, Pourshanazari A (2007) Combination therapy of rosiglitazone, a peroxisome proliferator activated receptor ligand, and NMDA receptor antagonist (MK 801) on experimental embolic stroke in rats. Basic Clin Pharmacol Toxicol 101:309–314

    Article  PubMed  CAS  Google Scholar 

  • Anderson RJ, Freedland KE, Clouse RE, Lustman PJ (2001) The prevalence of comorbid depression in adults with diabetes. Diabetes Care 24:1069

    Article  PubMed  CAS  Google Scholar 

  • Aoun P, Simpkins JW, Agarwal N (2003) Role of PPAR-gamma ligands in neuroprotection against glutamate-induced cytotoxicity in retinal ganglion cells. Investig Ophthalmol Vis Sci 44:2999

    Article  Google Scholar 

  • Arroll B, Macgillivray S, Ogston S, Reid I, Sullivan F, Williams B, Crombie I (2005) Efficacy and tolerability of tricyclic antidepressants and SSRIs compared with placebo for treatment of depression in primary care: a meta-analysis. Ann Fam Med 3:449–456

    Article  PubMed  Google Scholar 

  • Baxter AJ, Charlson FJ, Somerville AJ, Whiteford HA (2011) Mental disorders as risk factors: assessing the evidence for the global burden of disease study. BMC Med 9:134

    Article  PubMed  Google Scholar 

  • Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354

    Article  PubMed  CAS  Google Scholar 

  • Bordet R, Ouk T, Petrault O, Gele P, Gautier S, Laprais M, Deplanque D, Duriez P, Staels B, Fruchart JC, Bastide M (2006) PPAR: a new pharmacological target for neuroprotection in stroke and neurodegenerative diseases. Biochem Soc Trans 34:1341–1346

    Article  PubMed  CAS  Google Scholar 

  • Brasier AR (2006) The NF-kappaB regulatory network. Cardiovasc Toxicol 6:111–130

    Article  PubMed  CAS  Google Scholar 

  • Brocardo PS, Budni J, Lobato KR, Santos ARS, Rodrigues ALS (2009) Evidence for the involvement of the opioid system in the antidepressant-like effect of folic acid in the mouse forced swimming test. Behav Brain Res 200:122–127

    Article  PubMed  CAS  Google Scholar 

  • Budni J, Lobato KR, Binfare RW, Freitas AE, Costa AP, Saavedra MD, Leal RB, Lopez MG, Rodrigues AL (2011) Involvement of PI3K, GSK-3beta and PPARgamma in the antidepressant-like effect of folic acid in the forced swimming test in mice. J Psychopharmacol. doi:10.1177/0269881111424456

  • Cho SI, Park UJ, Chung JM, Gwag BJ (2010) Neu 2000, an NR2B-selective, moderate NMDA receptor antagonist and potent spin trapping molecule for stroke. Drug News Perspect 23:549–556

    Article  PubMed  CAS  Google Scholar 

  • Cimini A, Benedetti E, Cristiano L, Sebastiani P, D'amico M, D'angelo B, Di Loreto S (2005) Expression of peroxisome proliferator-activated receptors (PPARs) and retinoic acid receptors (RXRs) in rat cortical neurons. Neuroscience 130:325–337

    Article  PubMed  CAS  Google Scholar 

  • Consoni FT, Vital MABF, Andreatini R (2006) Dual monoamine modulation for the antidepressant-like effect of lamotrigine in the modified forced swimming test. Eur Neuropsychopharmacol 16:451–458

    Article  PubMed  CAS  Google Scholar 

  • Cryan JF, Markou A, Lucki I (2002) Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 23:238–245

    Article  PubMed  CAS  Google Scholar 

  • De Groot M, Anderson R, Freedland KE, Clouse RE, Lustman PJ (2001) Association of depression and diabetes complications: a meta-analysis. Psychosom Med 63:619

    PubMed  Google Scholar 

  • Dehmer T, Heneka MT, Sastre M, Dichgans J, Schulz JB (2004) Protection by pioglitazone in the MPTP model of Parkinson's disease correlates with I kappa B alpha induction and block of NF kappa B and iNOS activation. J Neurochem 88:494–501

    Article  PubMed  CAS  Google Scholar 

  • Eissa Ahmed AA, Al-Rasheed NM (2009) Antidepressant-like effects of rosiglitazone, a PPARgamma agonist, in the rat forced swim and mouse tail suspension tests. Behav Pharmacol 20:635–642

    Article  PubMed  Google Scholar 

  • Esplugues JV (2002) NO as a signalling molecule in the nervous system. Br J Pharmacol 135:1079–1095

    Google Scholar 

  • Feinstein DL, Galea E, Gavrilyuk V, Brosnan CF, Whitacre CC, Dumitrescu-Ozimek L, Landreth GE, Pershadsingh HA, Weinberg G, Heneka MT (2002) Peroxisome proliferator-activated receptor-gamma agonists prevent experimental autoimmune encephalomyelitis. Ann Neurol 51:694–702

    Article  PubMed  CAS  Google Scholar 

  • Gardoni F, Ghiglieri V, Luca M, Calabresi P (2010) Assemblies of glutamate receptor subunits with post-synaptic density proteins and their alterations in Parkinson's disease. Prog Brain Res 183:169–182

    Article  PubMed  CAS  Google Scholar 

  • Geldmacher DS, Fritsch T, McClendon MJ, Landreth G (2011) A randomized pilot clinical trial of the safety of pioglitazone in treatment of patients with Alzheimer disease. Arch Neurol 68:45–50

    Article  PubMed  Google Scholar 

  • Ghasemi M, Montaser-Kouhsari L, Shafaroodi H, Nezami BG, Ebrahimi F, Dehpour AR (2009) NMDA receptor/nitrergic system blockage augments antidepressant-like effects of paroxetine in the mouse forced swimming test. Psychopharmacology (Berl) 206:325–333

    Article  CAS  Google Scholar 

  • Ghasemi M, Raza M, Dehpour AR (2010) NMDA receptor antagonists augment antidepressant-like effects of lithium in the mouse forced swimming test. J Psychopharmacol 24:585–594

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez O, Berry J, McKnight-Eily L, Strine T, Edwards V, Lu H, Croft J (2010) Current depression among adults: United States, 2006 and 2008. Morb Mortal Wkly Rev 59:1229–1235

    Google Scholar 

  • Hara MR, Snyder SH (2007) Cell signaling and neuronal death. Annu Rev Pharmacol Toxicol 47:117–141

    Google Scholar 

  • Ibrahim L, Diazgranados N, Luckenbaugh DA, Machado-Vieira R, Baumann J, Mallinger AG, Zarate CA Jr (2011) Rapid decrease in depressive symptoms with an N-methyl-d-aspartate antagonist in ECT-resistant major depression. Prog Neuropsychopharmacol Biol Psychiatry 35:1155–1159

    Article  PubMed  CAS  Google Scholar 

  • Ji-Rong Y, Bi-Rong D, Chang-Quan H, Zhen-Chan L, Hong-Mei W, Yan-Ling Z, Mattis TA (2009) Pro12Ala polymorphism in PPAR [gamma] 2 associated with depression in Chinese nonagenarians/centenarians. Arch Med Res 40:411–415

    Article  PubMed  Google Scholar 

  • Kantrowitz JT, Javitt DC (2010) Thinking glutamatergically: changing concepts of schizophrenia based upon changing neurochemical models. Clin Schizophr Relat Psychoses 4:189–200

    Article  PubMed  Google Scholar 

  • Katon W, Fan MY, Unützer J, Taylor J, Pincus H, Schoenbaum M (2008) Depression and diabetes: a potentially lethal combination. J Gen Intern Med 23:1571–1575

    Article  PubMed  Google Scholar 

  • Kemp DE, Ismail-Beigi F, Calabrese JR (2009) Antidepressant response associated with pioglitazone: support for an overlapping pathophysiology between major depression and metabolic syndrome. Am J Psychiatry 166:619

    Article  PubMed  Google Scholar 

  • Kemp DE, Ismail-Beigi F, Ganocy SJ, Conroy C, Gao K, Obral S, Fein E, Findling RL, Calabrese JR (2011) Use of insulin sensitizers for the treatment of major depressive disorder: a pilot study of pioglitazone for major depression accompanied by abdominal obesity. J Affect Disord 136:1164–1173

    Article  PubMed  Google Scholar 

  • Kessler RC, Merikangas KR, Wang PS (2007) Prevalence, comorbidity, and service utilization for mood disorders in the United States at the beginning of the twenty-first century. Annu Rev Clin Psychol 3:137–158

    Article  PubMed  Google Scholar 

  • Kiaei M, Kipiani K, Chen J, Calingasan NY, Beal MF (2005) Peroxisome proliferator-activated receptor-gamma agonist extends survival in transgenic mouse model of amyotrophic lateral sclerosis. Exp Neurol 191:331–336

    Article  PubMed  CAS  Google Scholar 

  • Konarski JZ, McIntyre RS, Kennedy SH, Rafi Tari S, Soczynska JK, Ketter TA (2008) Volumetric neuroimaging investigations in mood disorders: bipolar disorder versus major depressive disorder. Bipolar Disord 10:1–37

    Article  PubMed  Google Scholar 

  • Kummer MP, Heneka MT (2008) PPARs in Alzheimer’s disease. PPAR Res 2008:403896

    Article  PubMed  Google Scholar 

  • Laursen SE, Belknap JK (1986) Intracerebroventricular injections in mice. Some methodological refinements. J Pharmacol Methods 16:355–357

    Article  PubMed  CAS  Google Scholar 

  • Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 270:12953–12956

    Article  PubMed  CAS  Google Scholar 

  • Mantovani M, Pertile R, Calixto JB, Santos AR, Rodrigues AL (2003) Melatonin exerts an antidepressant-like effect in the tail suspension test in mice: evidence for involvement of N-methyl-d-aspartate receptors and the l-arginine–nitric oxide pathway. Neurosci Lett 343:1–4

    Article  PubMed  CAS  Google Scholar 

  • Metzler M (2011) Mutations in NMDA receptors influence neurodevelopmental disorders causing epilepsy and intellectual disability. Clin Genet 79:219–220

    Article  PubMed  CAS  Google Scholar 

  • Milnerwood AJ, Raymond LA (2010) Early synaptic pathophysiology in neurodegeneration: insights from Huntington's disease. Trends Neurosci 33:513–523

    Article  PubMed  CAS  Google Scholar 

  • Molina-Hernandez M, Tellez-Alcantara NP, Perez-Garcia J, Olivera-Lopez JI, Jaramillo-Jaimes MT (2008) Antidepressant-like actions of minocycline combined with several glutamate antagonists. Prog Neuropsychopharmacol Biol Psychiatry 32:380–386

    Article  PubMed  CAS  Google Scholar 

  • Moncada S, Palmer R, Higgs E (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    Google Scholar 

  • Munhoz CD, Garcia-Bueno B, Madrigal JL, Lepsch LB, Scavone C, Leza JC (2008) Stress-induced neuroinflammation: mechanisms and new pharmacological targets. Braz J Med Biol Res 41:1037–1046

    Article  PubMed  CAS  Google Scholar 

  • Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R, Zinman B (2008) Management of hyperglycaemia in type 2 diabetes mellitus: a consensus algorithm for the initiation and adjustment of therapy. Update regarding the thiazolidinediones. Diabetologia 51:8–11

    Article  PubMed  CAS  Google Scholar 

  • Paul IA, Skolnick P (2003) Glutamate and depression: clinical and preclinical studies. Ann N Y Acad Sci 1003:250–272

    Google Scholar 

  • Pancani T, Phelps JT, Searcy JL, Kilgore MW, Chen KC, Porter NM, Thibault O (2009) Distinct modulation of voltage-gated and ligand-gated Ca2+ currents by PPAR-gamma agonists in cultured hippocampal neurons. J Neurochem 109:1800–1811

    Article  PubMed  CAS  Google Scholar 

  • Pereira MP, Hurtado O, Cardenas A, Bosca L, Castillo J, Davalos A, Vivancos J, Serena J, Lorenzo P, Lizasoain I, Moro MA (2006) Rosiglitazone and 15-deoxy-Delta12,14-prostaglandin J2 cause potent neuroprotection after experimental stroke through noncompletely overlapping mechanisms. J Cereb Blood Flow Metab 26:218–229

    Article  PubMed  CAS  Google Scholar 

  • Poleszak E, Wlaz P, Kedzierska E, Nieoczym D, Wrobel A, Fidecka S, Pilc A, Nowak G (2007) NMDA/glutamate mechanism of antidepressant-like action of magnesium in forced swim test in mice. Pharmacol Biochem Behav 88:158–164

    Article  PubMed  CAS  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336

    PubMed  CAS  Google Scholar 

  • Racke MK, Gocke AR, Muir M, Diab A, Drew PD, Lovett-Racke AE (2006) Nuclear receptors and autoimmune disease: the potential of PPAR agonists to treat multiple sclerosis. J Nutr 136:700–703

    PubMed  CAS  Google Scholar 

  • Riederer P, Bartl J, Laux G, Grünblatt E (2011) Diabetes type II: a risk factor for depression–Parkinson–Alzheimer? Neurotox Res 19:253–265

    Article  PubMed  Google Scholar 

  • Rosa AO, Lin J, Calixto JB, Santos ARS, Rodrigues ALS (2003) Involvement of NMDA receptors and l-arginine–nitric oxide pathway in the antidepressant-like effects of zinc in mice. Behav Brain Res 144:87–93

    Article  PubMed  CAS  Google Scholar 

  • Rosa AO, Kaster MP, Binfare RW, Morales S, Martin-Aparicio E, Navarro-Rico ML, Martinez A, Medina M, Garcia AG, Lopez MG, Rodrigues AL (2008) Antidepressant-like effect of the novel thiadiazolidinone NP031115 in mice. Prog Neuropsychopharmacol Biol Psychiatry 32:1549–1556

    Article  PubMed  CAS  Google Scholar 

  • Sadaghiani MS, Javadi-Paydar M, Gharedaghi MH, Fard YY, Dehpour AR (2011) Antidepressant-like effect of pioglitazone in the forced swimming test in mice: the role of PPAR-gamma receptor and nitric oxide pathway. Behav Brain Res 224:336–343

    Article  PubMed  CAS  Google Scholar 

  • Schintu N, Frau L, Ibba M, Caboni P, Garau A, Carboni E, Carta AR (2009) PPAR gamma mediated neuroprotection in a chronic mouse model of Parkinson’s disease. Eur J Neurosci 29:954–963

    Article  PubMed  Google Scholar 

  • Schutz B, Reimann J, Dumitrescu-Ozimek L, Kappes-Horn K, Landreth GE, Schurmann B, Zimmer A, Heneka MT (2005) The oral antidiabetic pioglitazone protects from neurodegeneration and amyotrophic lateral sclerosis-like symptoms in superoxide dismutase-G93A transgenic mice. J Neurosci 25:7805–7812

    Article  PubMed  Google Scholar 

  • Skolnick P, Popik P, Trullas R (2009) Glutamate-based antidepressants: 20 years on. Trends Pharmacol Sci 30:563–569

    Article  PubMed  CAS  Google Scholar 

  • Tokita K, Yamaji T, Hashimoto K (2011) Roles of glutamate signaling in preclinical and/or mechanistic models of depression. Pharmacol Biochem Behav

  • Trullas R, Skolnick P (1990) Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur J Pharmacol 185:1–10

    Article  PubMed  CAS  Google Scholar 

  • Wilken R, Veena MS, Wang MB, Srivatsan ES (2011) Curcumin: a review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer 10:12

    Article  PubMed  CAS  Google Scholar 

  • Yaffe K, Kanaya A, Lindquist K, Hsueh W, Cummings S, Beamer B, Newman A, Rosano C, Li R, Harris T (2008) PPAR-[gamma] Pro12Ala genotype and risk of cognitive decline in elders. Neurobiol Aging 29:78–83

    Article  PubMed  CAS  Google Scholar 

  • Yki-Järvinen H (2004) Thiazolidinediones. N Engl J Med 351:1106–1118

    Article  PubMed  Google Scholar 

  • Zarate CA, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK (2006) A randomized trial of an N-methyl-d-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63:856–864

    Article  PubMed  CAS  Google Scholar 

  • Zekry D, Gold G (2010) Management of mixed dementia. Drugs Aging 27:715–728

    Article  PubMed  Google Scholar 

  • Zhang F, Sowers JR, Ram JL, Standley PR, Peuler JD (1994) Effects of pioglitazone on calcium channels in vascular smooth muscle. Hypertension 24:170–175

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Ou Z, Grotta JC, Waxham N, Aronowski J (2006) Peroxisome-proliferator-activated receptor-gamma (PPAR [gamma]) activation protects neurons from NMDA excitotoxicity. Brain Res 1073:460–469

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Reza Dehpour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salehi-Sadaghiani, M., Javadi-Paydar, M., Gharedaghi, M.H. et al. NMDA receptor involvement in antidepressant-like effect of pioglitazone in the forced swimming test in mice. Psychopharmacology 223, 345–355 (2012). https://doi.org/10.1007/s00213-012-2722-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-012-2722-0

Keywords

Navigation