Skip to main content
Log in

Antidepressant-like effect of modafinil in mice: Evidence for the involvement of the dopaminergic neurotransmission

  • Original research article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Modafinil is a wake-promoting agent that provides wide ranges of neurological effects. There is evidence that it can produce antidepressant effects. This study investigated the antidepressant effect of modafinil in the tail suspension (TST) in mice.

Methods

Different doses of modafinil was intraperitoneally (ip) administrated and then animals were subjected to TST and/or open field test (OFT). Moreover, the implication of the dopaminergic neurotransmission in modafinil’s antidepressant effect was studied. For this purpose, animals were pretreated with haloperidol (non-selective dopamine receptor antagonist), or SCH23390 and sulpiride (the dopamine D1 and D2 receptor antagonist, respectively), then were assessed by TST. The possible effect of sub-effective dose of modafinil in combination with sub-therapeutic doses of standard antidepressants was also evaluated in separate groups.

Results

Modafinil (75 mg/kg, ip) produced antidepressant effect in TST, as compared to a control group, without any alterations in ambulation in OFT. Pretreatment of mice with haloperidol (0.2 mg/kg, ip) and sulpride (50 mg/kg, ip) blocked the anti-immobility effect of modafinil (75 mg/kg, ip). We also found that the administration of SCH23390 (0.05 mg/kg, sc) couldn’t antagonize the antidepressant effects of modafinil. In addition, a sub-effective dose of modafinil (50 mg/kg, ip) potentiated the sub-effective doses of standard antidepressants including of bupropion (1 mg/kg, ip), fluoxetine (1 mg/kg, ip) and imipramine (0.1 mg/kg, ip) and reduced immobility time in TST.

Conclusion

Results show that modafinil induced an antidepressant property in TST and this effect apparently was mediated through interaction with the dopaminergic (D2 receptors) system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Binfare RW, Rosa AO, Lobato KR, Santos AR, Rodrigues AL. Ascorbic acid administration produces an antidepressant-like effect: evidence for the involvement of monoaminergic neurotransmission. Prog Neuropsychopharmacol Biol Psychiatry 2009;33(3):530–40.

    Article  CAS  PubMed  Google Scholar 

  2. Hedlund PB, Huitron-Resendiz S, Henriksen SJ, Sutcliffe JG. 5-HT7 receptor inhibition and inactivation induce antidepressantlike behavior and sleep pattern. Biol Psychiatry 2005;58(10):831–7.

    Article  CAS  PubMed  Google Scholar 

  3. Machado DG, Bettio LE, Cunha MP, Capra JC, Dalmarco JB, Pizzolatti MG, et al. Antidepressant-like effect of the extract of Rosmarinus officinalis in mice: involvement of the monoaminergic system. Prog Neuropsychopharmacol Biol Psychiatry 2009;33(4):642–50.

    Article  CAS  PubMed  Google Scholar 

  4. Millan MJ. The role of monoamines in the actions of established and novel antidepressant agents: a critical review. Eur J Pharmacol 2004;500(1–3):371–84.

    Article  CAS  PubMed  Google Scholar 

  5. Basso AM, Gallagher KB, Bratcher NA, Brioni JD, Moreland RB, Hsieh GC, et al. Antidepressant-like effect of D(2/3) receptor-, but not D(4) receptor-activation in the rat forced swim test. Neuropsychopharmacology 2005;30(7):1257–68.

    Article  CAS  PubMed  Google Scholar 

  6. Gershon AA, Vishne T, Grunhaus L. Dopamine D2-like receptors and the antidepressant response. Biol Psychiatry 2007;61(2):145–53.

    Article  CAS  PubMed  Google Scholar 

  7. Dunlop BW, Nemeroff CB. The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry 2007;64(3):327–37.

    Article  CAS  PubMed  Google Scholar 

  8. Yadid G, Friedman A. Dynamics of the dopaminergic system as a key component to the understanding of depression. Prog Brain Res 2008;172:265–86.

    Article  CAS  PubMed  Google Scholar 

  9. Farhoudi M, Sadigh-Eteghad S, Andalib S, Vafaee M, Ziaee M, Mahmoudi J. An analytical review on probable anti-parkinsonian effect of modafinil. JARCM 2013;1(2):58–62.

    Google Scholar 

  10. Wisor J. Modafinil as a catecholaminergic agent: empirical evidence and unanswered questions. Front Neurol 2013;4:1–10.

    Article  Google Scholar 

  11. Ballon JS, Feifel D. A systematic review of modafinil: potential clinical uses and mechanisms of action. J Clin Psychiatry 2006;67(4):554–66.

    Article  CAS  PubMed  Google Scholar 

  12. Sase S, Khan D, Sialana F, Höger H, Russo-Schlaff N, Lubec G. Modafinil improves performance in the multiple T-Maze and modifies GluR1, GluR2, D2 and NR1 receptor complex levels in the C57BL/6J mouse. Amino Acids 2012;43(6):2285–92.

    Article  CAS  PubMed  Google Scholar 

  13. Gerrard P, Malcolm R. Mechanisms of modafinil: a review of current research. Neuropsychiatr Dis Treat 2007;3(3):349–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Qu WM, Huang ZL, Xu XH, Matsumoto N, Urade Y. Dopaminergic D1 and D2 receptors are essential for the arousal effect of modafinil. J Neurosci 2008;28(34):8462–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cardoso CC, Lobato KR, Binfare RW, Ferreira PK, Rosa AO, Santos AR, et al. Evidence for the involvement of the monoaminergic system in the antidepressant-like effect of magnesium. Prog Neuropsychopharmacol Biol Psychiatry 2009;33(2):235–42.

    Article  CAS  PubMed  Google Scholar 

  16. Gu X, Zhou Y, Wu X, Wang F, Zhang CY, Du C, et al. Antidepressant-like effects of auraptenol in mice. Sci Rep 2014;4:1–4.

    Google Scholar 

  17. Jesse CR, Wilhelm EA, Bortolatto CF, Rocha JB, Nogueira CW. Involvement of L-arginine-nitric oxide-cyclic guanosine monophosphate pathway in the anti-depressant-like effect of bis selenide in the mouse tail suspension test. Eur J Pharmacol 2010;635(1–3):135–41.

    Article  CAS  PubMed  Google Scholar 

  18. Mantovani M, Pertile R, Calixto JB, Santos AR, Rodrigues AL. Melatonin exerts an antidepressant-like effect in the tail suspension test in mice: evidence for involvement of N-methyl-D-aspartate receptors and the L-arginine-nitric oxide pathway. Neurosci Lett 2003;343(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  19. Cryan JF, Mombereau C, Vassout A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 2005;29(4–5):571–625.

    Article  CAS  PubMed  Google Scholar 

  20. Cryan JF, Markou A, Lucki I. Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 2002;23(5):238–45.

    Article  CAS  PubMed  Google Scholar 

  21. Kafkafi N, Yekutieli D, Elmer GI. A data mining approach to in vivo classification of psychopharmacological drugs. Neuropsychopharmacology 2009;34(3):607–23.

    Article  CAS  PubMed  Google Scholar 

  22. Bobo WV, Shelton RC. Modafinil as an adjunctive treatment for bipolar depression. European Psychiatric Review 2010;3(2):49–52.

    Google Scholar 

  23. Yamada J, Sugimoto Y, Yamada S. Involvement of dopamine receptors in the anti-immobility effects of dopamine re-uptake inhibitors in the forced swimming test. Eur J Pharmacol 2004;504(3):207–11.

    Article  CAS  PubMed  Google Scholar 

  24. Martin-Soelch C. Is depression associated with dysfunction of the central reward system? Biochem Soc Trans 2009;37(1):313.

    Article  CAS  PubMed  Google Scholar 

  25. Keller J, Young CB, Kelley E, Prater K, Levitin DJ, Menon V. Trait anhedonia is associated with reduced reactivity and connectivity of mesolimbic and paralimbic reward pathways. J Psychiatr Res 2013;47(10):1319–28.

    Article  PubMed  Google Scholar 

  26. Henriques JB, Davidson RJ. Decreased responsiveness to reward in depression. Cogn Emot 2000;14(5):711–24.

    Article  Google Scholar 

  27. Alex K, Pehek E. Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission. Pharmacol Therap 2007;113(2):296–320.

    Article  CAS  Google Scholar 

  28. Schlaepfer TE, Cohen MX, Frick C, Kosel M, Brodesser D, Axmacher N, et al. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology 2008;33(2):368–77.

    Article  PubMed  Google Scholar 

  29. Shirayama Y, Chaki S. Neurochemistry of the nucleus accumbens and its relevance to depression and antidepressant action in rodents. Curr Neuropharmacol 2006;4(4):277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Murillo-Rodríguez E, Haro R, Palomero-Rivero M, Millán-Aldaco D, Drucker-Colín R. Modafinil enhances extracellular levels of dopamine in the nucleus accumbens and increases wakefulness in rats. Behav Brain Res 2007;176(2):353–7.

    Article  PubMed  CAS  Google Scholar 

  31. Volkow ND, Fowler JS, Logan J, Alexoff D, Zhu W, Telang F, et al. Effects of modafinil on dopamine and dopamine transporters in the male human brain: clinical implications. JAMA 2009;301(11):1148–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dailly E, Chenu F, Renard CE, Bourin M. Dopamine, depression and antidepressants. Fundam Clin Pharmacol 2004;18(6):601–7.

    Article  CAS  PubMed  Google Scholar 

  33. Kalivas PW. Neurotransmitter regulation of dopamine neurons in the ventral tegmental area. Brain Res Rev 1993;18(1):75–113.

    Article  CAS  PubMed  Google Scholar 

  34. Hirano S, Miyata S, Onodera K, Kamei J. Involvement of dopamine D1 receptors and alpha1-adrenoceptors in the antidepressant-like effect of chlorpheniramine in the mouse tail suspension test. Eur J Pharmacol 2007;562(1–2):72–6.

    Article  CAS  PubMed  Google Scholar 

  35. Minzenberg MJ, Carter CS. Modafinil: a review of neurochemical actions and effects on cognition. Neuropsychopharmacology 2007;33(7):1477–502.

    Article  PubMed  CAS  Google Scholar 

  36. Ikemoto S, Glazier BS, Murphy JM, McBride WJ. Role of dopamine D1 and D2 receptors in the nucleus accumbens in mediating reward. J Neurosci 1997;17(21):8580–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hisahara S, Shimohama S. Dopamine receptors Parkinson’s disease. Int J Med Chem 2011;2011:1–16.

    Google Scholar 

  38. Bachtell RK, Whisler K, Karanian D, Self DW. Effects of intranucleus accumbens shell administration of dopamine agonists and antagonists on cocaine-taking and cocaine-seeking behaviors in the rat. Psychopharmacology (Berl) 2005;183(1):41–53.

    Article  CAS  Google Scholar 

  39. Dias C, Lachize S, Boilet V, Huitelec E, Cador M. Differential effects of dopaminergic agents on locomotor sensitisation and on the reinstatement of cocaine-seeking and food-seeking behaviour. Psychopharmacology (Berl) 2004;175(4):414–27.

    CAS  Google Scholar 

  40. de Saint Hilaire Z, Orosco M, Rouch C, Blanc G, Nicolaidis S. Variations in extracellular monoamines in the prefrontal cortex and medial hypothalamus after modafinil administration: a microdialysis study in rats. Neuroreport 2001;12(16):3533–7.

    Article  PubMed  Google Scholar 

  41. Ferraro L, Fuxe K, Agnati L, Tanganelli S, Tomasini MC, Antonelli T. Modafinil enhances the increase of extracellular serotonin levels induced by the antidepressant drugs fluoxetine and imipramine: a dual probe microdialysis study in awake rat. Synapse 2005;55(4):230–41.

    Article  CAS  PubMed  Google Scholar 

  42. Ferraro L, Fuxe K, Tanganelli S, Fernandez M, Rambert F, Antonelli T. Amplification of cortical serotonin release: a further neurochemical action of the vigilance-promoting drug modafinil. Neuropharmacology 2000;39(11):1974–83.

    Article  CAS  PubMed  Google Scholar 

  43. Machado-Vieira R, Salvadore G, DiazGranados N, Zarate Jr CA. Ketamine and the next generation of antidepressants with a rapid onset of action. Pharmacol Ther 2009;123(2):143–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Sadigh-Eteghad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudi, J., Farhoudi, M., Talebi, M. et al. Antidepressant-like effect of modafinil in mice: Evidence for the involvement of the dopaminergic neurotransmission. Pharmacol. Rep 67, 478–484 (2015). https://doi.org/10.1016/j.pharep.2014.11.005

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2014.11.005

Keywords

Navigation